452 research outputs found

    Overlay networks for smart grids

    Get PDF

    MOSAIC: Unified Platform for Dynamic Overlay Selection and Composition

    Get PDF
    MOSAIC constructs new overlay networks with desired characteristics by composing existing overlays with subsets of those attributes. Thus, MOSAIC overcomes the problem of multiple network infrastructures that are partial solutions, while preserving deployability. Composition of control and/or data planes is possible in the system. MOSAIC overlays are specified in Mozlog, a declarative language that specifies overlay properties without binding them to a particular implementation or underlying network. This paper focuses on the runtime aspects of MOSAIC: how it enables interoperability between different overlay networks and how it implements switching between different overlay compositions, permitting dynamic compositions with both existing overlay networks and legacy applications. The system is validated experimentally using declarative overlay compositions concisely specified in Mozlog: an indirection overlay that supports mobility (i3), a resilient overlay (RON), and scalable lookups (Chord), all of which are combined to provide new functionality. MOSAIC provides the benefits of runtime composition to simultaneously deliver application-aware mobility, NAT traversal and reliability with low performance overhead, demonstrated by measurements on both a local cluster and PlanetLab

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    Type-Directed Program Transformations for the Working Functional Programmer

    Get PDF
    We present preliminary research on Deuce+, a set of tools integrating plain text editing with structural manipulation that brings the power of expressive and extensible type-directed program transformations to everyday, working programmers without a background in computer science or mathematical theory. Deuce+ comprises three components: (i) a novel set of type-directed program transformations, (ii) support for syntax constraints for specifying "code style sheets" as a means of flexibly ensuring the consistency of both the concrete and abstract syntax of the output of program transformations, and (iii) a domain-specific language for specifying program transformations that can operate at a high level on the abstract (and/or concrete) syntax tree of a program and interface with syntax constraints to expose end-user options and alleviate tedious and potentially mutually inconsistent style choices. Currently, Deuce+ is in the design phase of development, and discovering the right usability choices for the system is of the highest priority
    • …
    corecore