307 research outputs found

    Experimental Approaches to the Composition of Interactive Video Game Music

    Get PDF
    This project explores experimental approaches and strategies to the composition of interactive music for the medium of video games. Whilst music in video games has not enjoyed the technological progress that other aspects of the software have received, budgets expand and incomes from releases grow. Music is now arguably less interactive than it was in the 1990’s, and whilst graphics occupy large amounts of resources and development time, audio does not garner the same attention. This portfolio develops strategies and audio engines, creating music using the techniques of aleatoric composition, real-time remixing of existing work, and generative synthesisers. The project created music for three ‘open-form’ games : an example of the racing genre (Kart Racing Pro); an arena-based first-person shooter (Counter-Strike : Source); and a real-time strategy title (0 A.D.). These games represent a cross-section of ‘sandbox’- type games on the market, as well as all being examples of games with open-ended or open-source code

    National Security Space Launch

    Get PDF
    The United States Space Force’s National Security Space Launch (NSSL) program, formerly known as the Evolved Expendable Launch Vehicle (EELV) program, was first established in 1994 by President William J. Clinton’s National Space Transportation Policy. The policy assigned the responsibility for expendable launch vehicles to the Department of Defense (DoD), with the goals of lowering launch costs and ensuring national security access to space. As such, the United States Air Force Space and Missile Systems Center (SMC) started the EELV program to acquire more affordable and reliable launch capability for valuable U.S. military satellites, such as national reconnaissance satellites that cost billions per satellite. In March 2019, the program name was changed from EELV to NSSL, which reflected several important features: 1.) The emphasis on “assured access to space,” 2.) transition from the Russian-made RD-180 rocket engine used on the Atlas V to a US-sourced engine (now scheduled to be complete by 2022), 3.) adaptation to manifest changes (such as enabling satellite swaps and return of manifest to normal operations both within 12 months of a need or an anomaly), and 4.) potential use of reusable launch vehicles. As of August 2019, Blue Origin, Northrop Grumman Innovation Systems, SpaceX, and United Launch Alliance (ULA) have all submitted proposals. From these, the U.S. Air Force will be selecting two companies to fulfill approximately 34 launches over a period of five years, beginning in 2022. This paper will therefore first examine the objectives for the NSSL as presented in the 2017 National Security Strategy, Fiscal Year 2019, Fiscal Year 2020, and Fiscal Year 2021 National Defense Authorization Acts (NDAA), and National Presidential Directive No. 40. The paper will then identify areas of potential weakness and gaps that exist in space launch programs as a whole and explore the security implications that impact the NSSL specifically. Finally, the paper will examine how the trajectory of the NSSL program could be adjusted in order to facilitate a smooth transition into new launch vehicles, while maintaining mission success, minimizing national security vulnerabilities, and clarifying the defense acquisition process.No embargoAcademic Major: EnglishAcademic Major: International Studie

    Unsupervised Anomaly-based Malware Detection using Hardware Features

    Get PDF
    Recent works have shown promise in using microarchitectural execution patterns to detect malware programs. These detectors belong to a class of detectors known as signature-based detectors as they catch malware by comparing a program's execution pattern (signature) to execution patterns of known malware programs. In this work, we propose a new class of detectors - anomaly-based hardware malware detectors - that do not require signatures for malware detection, and thus can catch a wider range of malware including potentially novel ones. We use unsupervised machine learning to build profiles of normal program execution based on data from performance counters, and use these profiles to detect significant deviations in program behavior that occur as a result of malware exploitation. We show that real-world exploitation of popular programs such as IE and Adobe PDF Reader on a Windows/x86 platform can be detected with nearly perfect certainty. We also examine the limits and challenges in implementing this approach in face of a sophisticated adversary attempting to evade anomaly-based detection. The proposed detector is complementary to previously proposed signature-based detectors and can be used together to improve security.Comment: 1 page, Latex; added description for feature selection in Section 4, results unchange

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Multilevel Runtime Verification for Safety and Security Critical Cyber Physical Systems from a Model Based Engineering Perspective

    Get PDF
    Advanced embedded system technology is one of the key driving forces behind the rapid growth of Cyber-Physical System (CPS) applications. CPS consists of multiple coordinating and cooperating components, which are often software-intensive and interact with each other to achieve unprecedented tasks. Such highly integrated CPSs have complex interaction failures, attack surfaces, and attack vectors that we have to protect and secure against. This dissertation advances the state-of-the-art by developing a multilevel runtime monitoring approach for safety and security critical CPSs where there are monitors at each level of processing and integration. Given that computation and data processing vulnerabilities may exist at multiple levels in an embedded CPS, it follows that solutions present at the levels where the faults or vulnerabilities originate are beneficial in timely detection of anomalies. Further, increasing functional and architectural complexity of critical CPSs have significant safety and security operational implications. These challenges are leading to a need for new methods where there is a continuum between design time assurance and runtime or operational assurance. Towards this end, this dissertation explores Model Based Engineering methods by which design assurance can be carried forward to the runtime domain, creating a shared responsibility for reducing the overall risk associated with the system at operation. Therefore, a synergistic combination of Verification & Validation at design time and runtime monitoring at multiple levels is beneficial in assuring safety and security of critical CPS. Furthermore, we realize our multilevel runtime monitor framework on hardware using a stream-based runtime verification language

    ESF e-Bike Initiative at SUNY College of Environmental Science and Forestry

    Get PDF
    Electric Bicycles, ore-Bikes, are legal in 35 of 50 US States, as well as most other countries in Europe, South America, and Asia. New York State has been fighting the legal battle one-Bikes, with legalization bills on the floor for the past 11 years. As part of my Honors Fellowship, I have been tasked with preparing an e-Bike Initiative pending legalized e-Bikes in NYS. In this paper, I examine the intricacies surrounding the ambiguous legal battle cunently raging in NYS, provide insights as to what bike policies have worked well in other countries and US States, and then highlight the importance of e-Bike legalization in terms of the three pillars of sustainability. Some of the top recommendations I provide are based on California\u27s new e-Bike policy, the PeopleforBikes organizations\u27 campaigns for bike safety, and a literature review. Also, attached in the appendix is the business plan and materials for an ESF e-Bike Initiative at ESF which would sell and rent e-Bikes to students to support the ESF Honors Program
    • 

    corecore