7,064 research outputs found

    Steering in computational science: mesoscale modelling and simulation

    Full text link
    This paper outlines the benefits of computational steering for high performance computing applications. Lattice-Boltzmann mesoscale fluid simulations of binary and ternary amphiphilic fluids in two and three dimensions are used to illustrate the substantial improvements which computational steering offers in terms of resource efficiency and time to discover new physics. We discuss details of our current steering implementations and describe their future outlook with the advent of computational grids.Comment: 40 pages, 11 figures. Accepted for publication in Contemporary Physic

    2011 Strategic roadmap for Australian research infrastructure

    Get PDF
    The 2011 Roadmap articulates the priority research infrastructure areas of a national scale (capability areas) to further develop Australia’s research capacity and improve innovation and research outcomes over the next five to ten years. The capability areas have been identified through considered analysis of input provided by stakeholders, in conjunction with specialist advice from Expert Working Groups   It is intended the Strategic Framework will provide a high-level policy framework, which will include principles to guide the development of policy advice and the design of programs related to the funding of research infrastructure by the Australian Government. Roadmapping has been identified in the Strategic Framework Discussion Paper as the most appropriate prioritisation mechanism for national, collaborative research infrastructure. The strategic identification of Capability areas through a consultative roadmapping process was also validated in the report of the 2010 NCRIS Evaluation. The 2011 Roadmap is primarily concerned with medium to large-scale research infrastructure. However, any landmark infrastructure (typically involving an investment in excess of $100 million over five years from the Australian Government) requirements identified in this process will be noted. NRIC has also developed a ‘Process to identify and prioritise Australian Government landmark research infrastructure investments’ which is currently under consideration by the government as part of broader deliberations relating to research infrastructure. NRIC will have strategic oversight of the development of the 2011 Roadmap as part of its overall policy view of research infrastructure

    From access and integration to mining of secure genomic data sets across the grid

    Get PDF
    The UK Department of Trade and Industry (DTI) funded BRIDGES project (Biomedical Research Informatics Delivered by Grid Enabled Services) has developed a Grid infrastructure to support cardiovascular research. This includes the provision of a compute Grid and a data Grid infrastructure with security at its heart. In this paper we focus on the BRIDGES data Grid. A primary aim of the BRIDGES data Grid is to help control the complexity in access to and integration of a myriad of genomic data sets through simple Grid based tools. We outline these tools, how they are delivered to the end user scientists. We also describe how these tools are to be extended in the BBSRC funded Grid Enabled Microarray Expression Profile Search (GEMEPS) to support a richer vocabulary of search capabilities to support mining of microarray data sets. As with BRIDGES, fine grain Grid security underpins GEMEPS

    Industry Simulation Gateway on a Scalable Cloud

    Get PDF
    Large scale simulation experimentation typically requires significant computational resources due to an excessive number of simulation runs and replications to be performed. The traditional approach to provide such computational power, both in academic research and industry/business applications, was to use computing clusters or desktop grid resources. However, such resources not only require upfront capital investment but also lack the flexibility and scalability that is required to serve a variable number of clients/users efficiently. This paper presents how SakerGrid, a commercial desktop grid based simulation platform and its associated science gateway have been extended towards a scalable cloud computing solution. The integration of SakerGrid with the MiCADO automated deployment and autoscaling framework supports the execution of multiple simulation experiments by dynamically allocating virtual machines in the cloud in order to complete the experiment by a user-defined deadline

    Environmental Decision-making utilizing a Web GIS to Monitor Hazardous Industrial Emissions in the Valencian community of Spain

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Air pollution is a critical issue in contemporary times. For this reason, officials and environmental managers are in need of suitable tools for visualization, manipulation and analysis of environmental data. Environmental concerns in Europe have encouraged the European Environmental Agency (EEA) to create the European Pollutant Release and Transfer Register (E-PRTR). The E-PRTR is vital and valuable because society will benefit if the data are used to improve monitoring and consequently advance environmental management. However, the data are not accessible in an interoperable way, which complicates their use and does not allow for a contribution to environmental monitoring. This paper describes a Web GIS system developed for the monitoring of industrial emissions using environmental data released by the EEA. Four research objectives are addressed: (1) design and create an interoperable spatial database to store environmental data, (2) develop a Web GIS to manipulate the spatial database, facilitate air pollution monitoring and enhance risk assessment, (3) implement OGC standards to provide data interoperability and integration into a Web GIS, (4) create a model to simulate distribution of air pollutants and assess a population’s exposure to industrial emissions. The proposed approach towards interoperability is an adoption of servicebased architecture for implementation of a three-tier Web GIS application. This system’s prototype is developed using open source tools for the Valencian Community of Spain

    TOWARDS INSTITUTIONAL INFRASTRUCTURES FOR E-SCIENCE: The Scope of the Challenge

    Get PDF
    The three-fold purpose of this Report to the Joint Information Systems Committee (JISC) of the Research Councils (UK) is to: • articulate the nature and significance of the non-technological issues that will bear on the practical effectiveness of the hardware and software infrastructures that are being created to enable collaborations in e- Science; • characterise succinctly the fundamental sources of the organisational and institutional challenges that need to be addressed in regard to defining terms, rights and responsibilities of the collaborating parties, and to illustrate these by reference to the limited experience gained to date in regard to intellectual property, liability, privacy, and security and competition policy issues affecting scientific research organisations; and • propose approaches for arriving at institutional mechanisms whose establishment would generate workable, specific arrangements facilitating collaboration in e-Science; and, that also might serve to meet similar needs in other spheres such as e- Learning, e-Government, e-Commerce, e-Healthcare. In carrying out these tasks, the report examines developments in enhanced computer-mediated telecommunication networks and digital information technologies, and recent advances in technologies of collaboration. It considers the economic and legal aspects of scientific collaboration, with attention to interactions between formal contracting and 'private ordering' arrangements that rest upon research community norms. It offers definitions of e-Science, virtual laboratories, collaboratories, and develops a taxonomy of collaborative e-Science activities which is implemented to classify British e-Science pilot projects and contrast these with US collaboratory projects funded during the 1990s. The approach to facilitating inter-organizational participation in collaborative projects rests upon the development of a modular structure of contractual clauses that permit flexibility and experience-based learning.
    corecore