805 research outputs found

    Growing the use of Virtual Worlds in education : an OpenSim perspective

    Get PDF
    The growth in the range of disciplines that Virtual Worlds support for educational purposes is evidenced by recent applications in the fields of cultural heritage, humanitarian aid, space exploration, virtual laboratories in the physical sciences, archaeology, computer science and coastal geography. This growth is due in part to the flexibility of OpenSim, the open source virtual world platform which by adopting Second Life protocols and norms has created a de facto standard for open virtual worlds that is supported by a growing number of third party open source viewers. Yet while this diversity of use-cases is impressive and Virtual Worlds for open learning are highly popular with lecturers and learners alike immersive education remains an essentially niche activity. This paper identifies functional challenges in terms of Management, Network Infrastructure, the Immersive 3D Web and Programmability that must be addressed to enable the wider adoption of Open Virtual Worlds as a routine learning technology platform. We refer to specific use-cases based on OpenSim and abstract generic requirements which should be met to enable the growth in use of Open Virtual Worlds as a mainstream educational facility. A case study of a deployment to support a formal education curriculum and associated informal learning is used to illustrate key points.Postprin

    Identity management in a public IaaS Cloud

    Get PDF
    In this thesis the unique environment that is the public IaaS cloud along with its differences from a traditional data center environment has been considered. The Cloud Security Alliance (CSA), states that “Managing identities and access control for enterprise applications remains one of the greatest challenges facing IT today”. The CSA also points out that “there is a lack of consistent secure methods for extending identity management into the cloud and across the cloud” [1]. This thesis examines this challenge of managing identities in the cloud by developing a list of best practices for implementing identity management in the cloud. These best practices were then tested by simulated misuse cases which were tested in a prototype of the implementation strategy. The results and analysis of the misuse cases show that the implementation of the identity management solution solves the problem of managing identities for the control of the infrastructure in the cloud. However, the analysis also shows that there are still areas where the properly implemented identity management solution fails to mitigate attacks to the infrastructure. These failures in particular are attacks that are sourced from the subscriber environments in the cloud. Finally, the best practices from this thesis also present some consistent methods for extending identity management into the cloud

    An Access Control Model for NoSQL Databases

    Get PDF
    Current development platforms are web scale, unlike recent platforms which were just network scale. There has been a rapid evolution in computing paradigm that has created the need for data storage as agile and scalable as the applications they support. Relational databases with their joins and locks influence performance in web scale systems negatively. Thus, various types of non-relational databases have emerged in recent years, commonly referred to as NoSQL databases. To fulfill the gaps created by their relational counter-part, they trade consistency and security for performance and scalability. With NoSQL databases being adopted by an increasing number of organizations, the provision of security for them has become a growing concern. This research presents a context based abstract model by extending traditional role based access control for access control in NoSQL databases. The said model evaluates and executes security policies which contain versatile access conditions against the dynamic nature of data. The goal is to devise a mechanism for a forward looking, assertive yet flexible security feature to regulate access to data in the database system that is devoid of rigid structures and consistency, namely a document based database such as MongoDB

    Process control and configuration of a reconfigurable production system using a multi-agent software system

    Get PDF
    Thesis (M. Tech. (Information Technology)) -- Central University of technology, Free State, 2011Traditional designs for component-handling platforms are rigidly linked to the product being produced. Control and monitoring methods for these platforms consist of various proprietary hardware controllers containing the control logic for the production process. Should the configuration of the component handling platform change, the controllers need to be taken offline and reprogrammed to take the changes into account. The current thinking in component-handling system design is the notion of re-configurability. Reconfigurability means that with minimum or no downtime the system can be adapted to produce another product type or overcome a device failure. The re-configurable component handling platform is built-up from groups of independent devices. These groups or cells are each responsible for some aspect of the overall production process. By moving or swopping different versions of these cells within the component-handling platform, re-configurability is achieved. Such a dynamic system requires a flexible communications platform and high-level software control architecture to accommodate the reconfigurable nature of the system. This work represents the design and testing of the core of a re-configurable production control software platform. Multiple software components work together to control and monitor a re-configurable component handling platform. The design and implementation of a production database, production ontology, communications architecture and the core multi-agent control application linking all these components together is presented

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    A SEMANTIC BASED POLICY MANAGEMENT FRAMEWORK FOR CLOUD COMPUTING ENVIRONMENTS

    Get PDF
    Cloud computing paradigm has gained tremendous momentum and generated intensive interest. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this dissertation, we mainly focus on issues related to policy management and access control in the cloud. Currently, users have to use diverse access control mechanisms to protect their data when stored on the cloud service providers (CSPs). Access control policies may be specified in different policy languages and heterogeneity of access policies pose significant problems.An ideal policy management system should be able to work with all data regardless of where they are stored. Semantic Web technologies when used for policy management, can help address the crucial issues of interoperability of heterogeneous CSPs. In this dissertation, we propose a semantic based policy management framework for cloud computing environments which consists of two main components, namely policy management and specification component and policy evolution component. In the policy management and specification component, we first introduce policy management as a service (PMaaS), a cloud based policy management framework that give cloud users a unified control point for specifying authorization policies, regardless of where the data is stored. Then, we present semantic based policy management framework which enables users to specify access control policies using semantic web technologies and helps address heterogeneity issues of cloud computing environments. We also model temporal constraints and restrictions in GTRBAC using OWL and show how ontologies can be used to specify temporal constraints. We present a proof of concept implementation of the proposed framework and provide some performance evaluation. In the policy evolution component, we propose to use role mining techniques to deal with policy evolution issues and present StateMiner, a heuristic algorithm to find an RBAC state as close as possible to both the deployed RBAC state and the optimal state. We also implement the proposed algorithm and perform some experiments to demonstrate its effectiveness

    Semantic Information Assurance for Secure Distributed Knowledge Management: A Business Process Perspective

    Get PDF
    Secure knowledge management for eBusiness processes that span multiple organizations requires intraorganizational and interorganizational perspectives on security and access control issues. There is paucity in research on information assurance of distributed interorganizational eBusiness processes from a business process perspective. This paper presents a framework for secure semantic eBusiness processes integrating three streams of research, namely: 1) eBusiness processes; 2) information assurance; and 3) semantic technology. This paper presents the conceptualization and analysis of a secure semantic eBusiness process framework and architecture, and provides a holistic view of a secure interorganizational semantic eBusiness process. This paper fills a gap in the existing literature by extending role-based access control models for eBusiness processes that are done by using ontological analysis and semantic Web technologies to develop a framework for computationally feasible secure eBusiness process knowledge representations. An integrated secure eBusiness process approach is needed to provide a unifying conceptual framework to understand the issues surrounding access control over distributed information and knowledge resources

    Location aware self-adapting firewall policies

    Get PDF
    Private access to corporate servers from Internet can be achieved using various security mechanisms. This article presents a network access control mechanism that employs a policy management architecture empowered with dynamic firewalls. With the existence of such an architecture, system and/or network administrators do not need to reconfigure firewalls when there is a location change in user settings, reconfiguration will be automatic and seamless. The proposed architecture utilizes dynamic firewalls, which adapt their policies according to user locations through the guidance of a policy server. This architecture is composed of a VPN client at user site, a domain firewall with VPN capabilities, a policy server containing a policy decision engine, and policy agents residing in dynamic firewalls, which map policy server decisions to firewall policy rules, at server site

    Enhanced Cauchy Matrix Reed-Solomon Codes and Role-Based Cryptographic Data Access for Data Recovery and Security in Cloud Environment

    Get PDF
    In computer systems ensuring proper authorization is a significant challenge, particularly with the rise of open systems and dispersed platforms like the cloud. Role-Based Access Control (RBAC) has been widely adopted in cloud server applications due to its popularity and versatility. When granting authorization access to data stored in the cloud for collecting evidence against offenders, computer forensic investigations play a crucial role. As cloud service providers may not always be reliable, data confidentiality should be ensured within the system. Additionally, a proper revocation procedure is essential for managing users whose credentials have expired.  With the increasing scale and distribution of storage systems, component failures have become more common, making fault tolerance a critical concern. In response to this, a secure data-sharing system has been developed, enabling secure key distribution and data sharing for dynamic groups using role-based access control and AES encryption technology. Data recovery involves storing duplicate data to withstand a certain level of data loss. To secure data across distributed systems, the erasure code method is employed. Erasure coding techniques, such as Reed-Solomon codes, have the potential to significantly reduce data storage costs while maintaining resilience against disk failures. In light of this, there is a growing interest from academia and the corporate world in developing innovative coding techniques for cloud storage systems. The research goal is to create a new coding scheme that enhances the efficiency of Reed-Solomon coding using the sophisticated Cauchy matrix to achieve fault toleranc
    corecore