181 research outputs found

    Multimodal Interaction for Enhancing Team Coordination on the Battlefield

    Get PDF
    Team coordination is vital to the success of team missions. On the battlefield and in other hazardous environments, mission outcomes are often very unpredictable because of unforeseen circumstances and complications encountered that adversely affect team coordination. In addition, the battlefield is constantly evolving as new technology, such as context-aware systems and unmanned drones, becomes available to assist teams in coordinating team efforts. As a result, we must re-evaluate the dynamics of teams that operate in high-stress, hazardous environments in order to learn how to use technology to enhance team coordination within this new context. In dangerous environments where multi-tasking is critical for the safety and success of the team operation, it is important to know what forms of interaction are most conducive to team tasks. We have explored interaction methods, including various types of user input and data feedback mediums that can assist teams in performing unified tasks on the battlefield. We’ve conducted an ethnographic analysis of Soldiers and researched technologies such as sketch recognition, physiological data classification, augmented reality, and haptics to come up with a set of core principles to be used when de- signing technological tools for these teams. This dissertation provides support for these principles and addresses outstanding problems of team connectivity, mobility, cognitive load, team awareness, and hands-free interaction in mobile military applications. This research has resulted in the development of a multimodal solution that enhances team coordination by allowing users to synchronize their tasks while keeping an overall awareness of team status and their environment. The set of solutions we’ve developed utilizes optimal interaction techniques implemented and evaluated in related projects; the ultimate goal of this research is to learn how to use technology to provide total situational awareness and team connectivity on the battlefield. This information can be used to aid the research and development of technological solutions for teams that operate in hazardous environments as more advanced resources become available

    Exploration of smart infrastructure for drivers of autonomous vehicles

    Get PDF
    The connection between vehicles and infrastructure is an integral part of providing autonomous vehicles information about the environment. Autonomous vehicles need to be safe and users need to trust their driving decision. When smart infrastructure information is integrated into the vehicle, the driver needs to be informed in an understandable manner what the smart infrastructure detected. Nevertheless, interactions that benefit from smart infrastructure have not been the focus of research, leading to knowledge gaps in the integration of smart infrastructure information in the vehicle. For example, it is unclear, how the information from two complex systems can be presented, and if decisions are made, how these can be explained. Enriching the data of vehicles with information from the infrastructure opens unexplored opportunities. Smart infrastructure provides vehicles with information to predict traffic flow and traffic events. Additionally, it has information about traffic events in several kilometers distance and thus enables a look ahead on a traffic situation, which is not in the immediate view of drivers. We argue that this smart infrastructure information can be used to enhance the driving experience. To achieve this, we explore designing novel interactions, providing warnings and visualizations about information that is out of the view of the driver, and offering explanations for the cause of changed driving behavior of the vehicle. This thesis focuses on exploring the possibilities of smart infrastructure information with a focus on the highway. The first part establishes a design space for 3D in-car augmented reality applications that profit from smart infrastructure information. Through the input of two focus groups and a literature review, use cases are investigated that can be introduced in the vehicle's interaction interface which, among others, rely on environment information. From those, a design space that can be used to design novel in-car applications is derived. The second part explores out-of-view visualizations before and during take over requests to increase situation awareness. With three studies, different visualizations for out-of-view information are implemented in 2D, stereoscopic 3D, and augmented reality. Our results show that visualizations improve the situation awareness about critical events in larger distances during take over request situations. In the third part, explanations are designed for situations in which the vehicle drives unexpectedly due to unknown reasons. Since smart infrastructure could provide connected vehicles with out-of-view or cloud information, the driving maneuver of the vehicle might remain unclear to the driver. Therefore, we explore the needs of drivers in those situations and derive design recommendations for an interface which displays the cause for the unexpected driving behavior. This thesis answers questions about the integration of environment information in vehicles'. Three important aspects are explored, which are essential to consider when implementing use cases with smart infrastructure in mind. It enables to design novel interactions, provides insights on how out-of-view visualizations can improve the drivers' situation awareness and explores unexpected driving situations and the design of explanations for them. Overall, we have shown how infrastructure and connected vehicle information can be introduced in vehicles' user interface and how new technology such as augmented reality glasses can be used to improve the driver's perception of the environment.Autonome Fahrzeuge werden immer mehr in den alltäglichen Verkehr integriert. Die Verbindung von Fahrzeugen mit der Infrastruktur ist ein wesentlicher Bestandteil der Bereitstellung von Umgebungsinformationen in autonome Fahrzeugen. Die Erweiterung der Fahrzeugdaten mit Informationen der Infrastruktur eröffnet ungeahnte Möglichkeiten. Intelligente Infrastruktur übermittelt verbundenen Fahrzeugen Informationen über den prädizierten Verkehrsfluss und Verkehrsereignisse. Zusätzlich können Verkehrsgeschehen in mehreren Kilometern Entfernung übermittelt werden, wodurch ein Vorausblick auf einen Bereich ermöglicht wird, der für den Fahrer nicht unmittelbar sichtbar ist. Mit dieser Dissertation wird gezeigt, dass Informationen der intelligenten Infrastruktur benutzt werden können, um das Fahrerlebnis zu verbessern. Dies kann erreicht werden, indem innovative Interaktionen gestaltet werden, Warnungen und Visualisierungen über Geschehnisse außerhalb des Sichtfelds des Fahrers vermittelt werden und indem Erklärungen über den Grund eines veränderten Fahrzeugverhaltens untersucht werden. Interaktionen, welche von intelligenter Infrastruktur profitieren, waren jedoch bisher nicht im Fokus der Forschung. Dies führt zu Wissenslücken bezüglich der Integration von intelligenter Infrastruktur in das Fahrzeug. Diese Dissertation exploriert die Möglichkeiten intelligenter Infrastruktur, mit einem Fokus auf die Autobahn. Der erste Teil erstellt einen Design Space für Anwendungen von augmentierter Realität (AR) in 3D innerhalb des Autos, die unter anderem von Informationen intelligenter Infrastruktur profitieren. Durch das Ergebnis mehrerer Studien werden Anwendungsfälle in einem Katalog gesammelt, welche in die Interaktionsschnittstelle des Autos einfließen können. Diese Anwendungsfälle bauen unter anderem auf Umgebungsinformationen. Aufgrund dieser Anwendungen wird der Design Space entwickelt, mit Hilfe dessen neuartige Anwendungen für den Fahrzeuginnenraum entwickelt werden können. Der zweite Teil exploriert Visualisierungen für Verkehrssituationen, die außerhalb des Sichtfelds des Fahrers sind. Es wird untersucht, ob durch diese Visualisierungen der Fahrer besser auf ein potentielles Übernahmeszenario vorbereitet wird. Durch mehrere Studien wurden verschiedene Visualisierungen in 2D, stereoskopisches 3D und augmentierter Realität implementiert, die Szenen außerhalb des Sichtfelds des Fahrers darstellen. Diese Visualisierungen verbessern das Situationsbewusstsein über kritische Szenarien in einiger Entfernung während eines Übernahmeszenarios. Im dritten Teil werden Erklärungen für Situationen gestaltet, in welchen das Fahrzeug ein unerwartetes Fahrmanöver ausführt. Der Grund des Fahrmanövers ist dem Fahrer dabei unbekannt. Mit intelligenter Infrastruktur verbundene Fahrzeuge erhalten Informationen, die außerhalb des Sichtfelds des Fahrers liegen oder von der Cloud bereit gestellt werden. Dadurch könnte der Grund für das unerwartete Fahrverhalten unklar für den Fahrer sein. Daher werden die Bedürfnisse des Fahrers in diesen Situationen erforscht und Empfehlungen für die Gestaltung einer Schnittstelle, die Erklärungen für das unerwartete Fahrverhalten zur Verfügung stellt, abgeleitet. Zusammenfassend wird gezeigt wie Daten der Infrastruktur und Informationen von verbundenen Fahrzeugen in die Nutzerschnittstelle des Fahrzeugs implementiert werden können. Zudem wird aufgezeigt, wie innovative Technologien wie AR Brillen, die Wahrnehmung der Umgebung des Fahrers verbessern können. Durch diese Dissertation werden Fragen über Anwendungsfälle für die Integration von Umgebungsinformationen in Fahrzeugen beantwortet. Drei wichtige Themengebiete wurden untersucht, welche bei der Betrachtung von Anwendungsfällen der intelligenten Infrastruktur essentiell sind. Durch diese Arbeit wird die Gestaltung innovativer Interaktionen ermöglicht, Einblicke in Visualisierungen von Informationen außerhalb des Sichtfelds des Fahrers gegeben und es wird untersucht, wie Erklärungen für unerwartete Fahrsituationen gestaltet werden können

    Information Systems for Supporting Fire Emergency Response

    Get PDF
    Despite recent work on information systems, many first responders in emergency situations are unable to develop sufficient understanding of the situation to enable them to make good decisions. The record of the UK Fire and Rescue Service (FRS) has been particularly poor in terms of providing the information systems support to the fire fighters decision-making during their work. There is very little work on identifying the specific information needs of different types of fire fighters. Consequently, this study has two main aims. The first is to identify the information requirements of several specific members of the FRS hierarchy that lead to better Situation Awareness. The second is to identify how such information should be presented. This study was based on extensive data collected in the FRS brigades of three counties and focused on large buildings having a high-risk of fire and four key fire fighter job roles: Incident Commander, Sector Commander, Breathing Apparatus Entry Control Officer and Breathing Apparatus Wearers. The requirements elicitation process was guided by a Cognitive Task Analysis (CTA) tool: Goal Directed Information Analysis (GDIA), which was developed specifically for this study. Initially appropriate scenarios were developed. Based on the scenarios, 44 semi-structured interviews were carried out in three different elicitation phases with both novice and experienced fire fighters. Together with field observations of fire simulation and training exercises, fire and rescue related documentation; a comprehensive set of information needs of fire fighters was identified. These were validated through two different stages via 34 brainstorming sessions with the participation of a number of subject-matter experts. To explore appropriate presentation methods of information, software mock-up was developed. This mock-up is made up of several human computer interfaces, which were evaluated via 19 walkthrough and workshop sessions, involving 22 potential end-users and 14 other related experts. As a result, many of the methods used in the mock-up were confirmed as useful and appropriate and several refinements proposed. The outcomes of this study include: 1) A set of GDI Diagrams showing goal related information needs for each of the job roles with the link to their decision-making needs, 2) A series of practical recommendations suitable for designing of human computer interfaces of fire emergency response information system, 3) Human computer interface mock-ups for an information system to enhance Situation Awareness of fire fighters and 4) A conceptual architecture for the underlying information system. In addition, this study also developed an enhanced cognitive task analysis tool capable of exploring the needs of emergency first responders. This thesis contributes to our understanding of how information systems could be designed to enhance the Situation Awareness of first responders in a fire emergency. These results will be of particular interest to practicing information systems designers and developers in the FRS in the UK and to the wider academic community
    • …
    corecore