2,271 research outputs found

    All-Optical Programmable Disaggregated Data Centre Network realized by FPGA-based Switch and Interface Card

    Get PDF
    This paper reports an FPGA-based switch and interface card (SIC) and its application scenario in an all-optical, programmable disaggregated data center network (DCN). Our novel SIC is designed and implemented to replace traditional optical network interface cards, plugged into the server directly, supporting optical packet switching (OPS)/optical circuit switching (OCS) or time division multiplexing (TDM)/wavelength division multiplexing (WDM) traffic on demand. Placing the SIC in each server/blade, we eliminate electronics from the top of rack (ToR) switch by pushing all the functionality on each blade while enabling direct intrarack blade-to-blade communication to deliver ultralow chip-to-chip latency. We demonstrate the disaggregated DCN architecture scenarios along with all-optical dimension-programmable N × M spectrum selective Switches (SSS) and an architecture-on-demand (AoD) optical backplane. OPS and OCS complement each other as do TDM and WDM, which can support variable traffic flows. A flat disaggregated DCN architecture is realized by connecting the optical ToR switches directly to either an optical top of cluster switch or the intracluster AoD optical backplane, while clusters are further interconnected to an intercluster AoD for scaling out

    FOS: A Modular FPGA Operating System for Dynamic Workloads

    Get PDF
    With FPGAs now being deployed in the cloud and at the edge, there is a need for scalable design methods which can incorporate the heterogeneity present in the hardware and software components of FPGA systems. Moreover, these FPGA systems need to be maintainable and adaptable to changing workloads while improving accessibility for the application developers. However, current FPGA systems fail to achieve modularity and support for multi-tenancy due to dependencies between system components and lack of standardised abstraction layers. To solve this, we introduce a modular FPGA operating system -- FOS, which adopts a modular FPGA development flow to allow each system component to be changed and be agnostic to the heterogeneity of EDA tool versions, hardware and software layers. Further, to dynamically maximise the utilisation transparently from the users, FOS employs resource-elastic scheduling to arbitrate the FPGA resources in both time and spatial domain for any type of accelerators. Our evaluation on different FPGA boards shows that FOS can provide performance improvements in both single-tenant and multi-tenant environments while substantially reducing the development time and, at the same time, improving flexibility

    Role of Optical Network in Cloud/Fog Computing

    Get PDF
    This chapter is a study of exploring the role of the optical network in the cloud/fog computing environment. With the growing network issues, unified and cost-effective computing services and efficient utilization of optical resources are required for building smart applications. Fog computing provides the foundation platform for implementing cyber-physical system (CPS) applications which require ultra-low latency. Also, the digital revolution of fog/cloud computing using optical resources has upgraded the education system by intertwined VR using the fog nodes. Presently, the current technologies face many challenges such as ultra-low delay, optimum bandwidth, and minimum energy consumption to promote virtual reality (VR)-based and electroencephalogram (EEG)-based gaming applications. Ultra-low delay, optimum bandwidth, and minimum energy consumption. Therefore, an Optical-Fog layer is introduced to provide a novel, secure, highly distributed, and ultra-dense fog computing infrastructure. Also, for optimum utilization of optical resources, a novel concept of OpticalFogNode is introduced that provides computation and storage capabilities at the Optical-Fog layer in the software defined networking (SDN)-based optical network. It efficiently facilitates the dynamic deployment of new distributed SDN-based OpticalFogNode which supports low-latency services with minimum energy as well as bandwidth usage. Therefore, an EEG-based VR framework is also introduced that uses the resources of the optical network in the cloud/fog computing environment
    • …
    corecore