1,961 research outputs found

    Reaction Force/Torque Sensing in a Master-Slave Robot System without Mechanical Sensors

    Get PDF
    In human-robot cooperative control systems, force feedback is often necessary in order to achieve high precision and high stability. Usually, traditional robot assistant systems implement force feedback using force/torque sensors. However, it is difficult to directly mount a mechanical force sensor on some working terminals, such as in applications of minimally invasive robotic surgery, micromanipulation, or in working environments exposed to radiation or high temperature. We propose a novel force sensing mechanism for implementing force feedback in a master-slave robot system with no mechanical sensors. The system consists of two identical electro-motors with the master motor powering the slave motor to interact with the environment. A bimanual coordinated training platform using the new force sensing mechanism was developed and the system was verified in experiments. Results confirm that the proposed mechanism is capable of achieving bilateral force sensing and mirror-image movements of two terminals in two reverse control directions

    Push Recovery of a Position-Controlled Humanoid Robot Based on Capture Point Feedback Control

    Full text link
    In this paper, a combination of ankle and hip strategy is used for push recovery of a position-controlled humanoid robot. Ankle strategy and hip strategy are equivalent to Center of Pressure (CoP) and Centroidal Moment Pivot (CMP) regulation respectively. For controlling the CMP and CoP we need a torque-controlled robot, however most of the conventional humanoid robots are position controlled. In this regard, we present an efficient way for implementation of the hip and ankle strategies on a position controlled humanoid robot. We employ a feedback controller to compensate the capture point error. Using our scheme, a simple and practical push recovery controller is designed which can be implemented on the most of the conventional humanoid robots without the need for torque sensors. The effectiveness of the proposed approach is verified through push recovery experiments on SURENA-Mini humanoid robot under severe pushes

    Desenvolvimento de um veículo inovador para armazéns automáticos

    Get PDF
    Intralogistics is increasingly a matter of research and development as a form of optimization, automation, integration and management of the flow of materials and information that circulate within a business unit. With a strong connection to material handling equipment and automation solutions, intralogistics has proved to be one of the main factors responsible for something that is already happening: a fourth industrial revolution where it is possible to convert warehouses and manufacturing units into intelligent environments where the entire process can be controlled and supervised through a single system. It became necessary to develop more and more innovative and efficient solutions to the constant diversity of challenges proposed by the market. In this sense, it was proposed to develop something innovative within the area of Automated Storage and Retrieval Systems (AS/RS), a technology increasingly sought after by today's manufacturing plants. As such, the goal was to improve the most emergent AS/RS in recent years: the Pallet/Box Shuttle AS/RS. In order to achieve the proposed objective, it was necessary to analyze all the existing solutions in the market and, principally, to find the main points to be improved and the direction to follow in order to innovate an already advanced solution. The results show a robotized solution where it was possible to increase the automation of the operations in the storage systems and improve the responsiveness of the system, taking this solution to a new level.A intralogística é cada vez mais uma área de investigação e desenvolvimento como uma forma de otimização, automação, integração e gestão do fluxo de materiais e informações que circulam dentro de uma unidade de negócios. Com uma forte ligação com equipamentos de manipulação de materiais e soluções de automação, a intralogística provou ser um dos principais fatores responsáveis por algo que já está a acontecer: uma quarta revolução industrial, onde é possível converter armazéns e unidades fabris em ambientes inteligentes, onde todo o processo pode ser controlado e supervisionado através de um único sistema. Tornou-se necessário desenvolver soluções cada vez mais inovadoras e eficientes para a constante diversidade de desafios propostos pelo mercado. Nesse sentido, propôs-se desenvolver algo inovador dentro da área dos Armazéns Automáticos, uma solução cada vez mais procurada pelas unidades fabris de hoje. Como tal, estabeleceu-se o objetivo de melhorar o tipo de Armazém Automático mais emergente dos últimos anos: o Armazém Automático com Veículos Satélite para Caixas ou Paletes. Para alcançar o objetivo proposto, foi necessário analisar todas as soluções existentes no mercado e, principalmente, encontrar os principais pontos a serem aprimorados e definir a direção a seguir para se inovar uma solução já avançada. Os resultados obtidos apresentam uma solução robotizada onde foi possível aumentar a automatização das operações dos sistemas de armazenamento e melhorar a capacidade de resposta do sistema, levando esta solução para um novo patamar

    DISTRIBUTED ELECTRO-MECHANICAL ACTUATION AND SENSING SYSTEM DESIGN FOR MORPHING STRUCTURES

    Get PDF
    Smart structures, able to sense changes of their own state or variations of the environment they’re in, and capable of intervening in order to improve their performance, find themselves in an ever-increasing use among numerous technology fields, opening new frontiers within advanced structural engineering and materials science. Smart structures represent of course a current challenge for the application on the aircrafts. A morphing structure can be considered as the result of the synergic integration of three main systems: the structural system, based on reliable kinematic mechanisms or on compliant elements enabling the shape modification, the actuation and control systems, characterized by embedded actuators and robust control strategies, and the sensing system, usually involving a network of sensors distributed along the structure to monitor its state parameters. Technologies with ever increasing maturity level are adopted to assure the consolidation of products in line with the aeronautical industry standards and fully compliant with the applicable airworthiness requirements. Until few years ago, morphing wing technology appeared an utopic solution. In the aeronautical field, airworthiness authorities demand a huge process of qualification, standardization, and verification. Essential components of an intelligent structure are sensors and actuators. The actual technological challenge, envisaged in the industrial scenario of “more electric aircraft”, will be to replace the heavy conventional hydraulic actuators with a distributed strategy comprising smaller electro-mechanical actuators. This will bring several benefit at the aircraft level: firstly, fuel savings. Additionally, a full electrical system reduces classical drawbacks of hydraulic systems and overall complexity, yielding also weight and maintenance benefits. At the same time, a morphing structure needs a real-time strain monitoring system: a nano-engineered polymer capable of densely distributed strain sensing can be a suitable solution for this kind of flying systems. Piezoresistive carbon nanotubes can be integrated as thin films coated and integrated with composite to form deformable self-sensing materials. The materials actually become sensors themselves without using external devices, embedded or attached. This doctoral thesis proposes a multi-disciplinary investigation of the most modern actuation and sensing technologies for variable-shaped devices mainly intended for large commercial aircraft. The personal involvement in several research projects with numerous international partners - during the last three years - allowed for exploiting engineering outcomes in view of potential certification and industrialization of the studied solutions. Moving from a conceptual survey of the smart systems that introduces the idea of adaptive aerodynamic surfaces and main research challenges, the thesis presents (Chapter 1) the current worldwide status of morphing technologies as well as industrial development expectations. The Ph.D. programme falls within the design of some of the most promising and potentially flyable solutions for performance improvement of green regional aircrafts. A camber-morphing aileron and a multi-modal flap are herein analysed and assessed as subcomponents involved for the realization of a morphing wing. An innovative camber-morphing aileron was proposed in CRIAQ MD0-505, a joint Canadian and Italian research project. Relying upon the experimental evidence within the present research, the issue appeared concerns the critical importance of considering the dynamic modelling of the actuators in the design phase of a smart device. The higher number of actuators involved makes de facto the morphing structure much more complex. In this context (Chapter 2), the action of the actuators has been modelled within the numerical model of the aileron: the comparison between the modal characteristics of numerical predictions and testing activities has shown a high level of correlation. Morphing structures are characterized by many more degrees of freedom and increased modal density, introducing new paradigms about modelling strategies and aeroelastic approaches. These aspects affect and modify many aspects of the traditional aeronautical engineering process, like simulation activity, design criteria assessment, and interpretation of the dynamic response (Chapter 3). With respect the aforementioned aileron, sensitivity studies were carried out in compliance with EASA airworthiness requirements to evaluate the aero-servo-elastic stability of global system with respect to single and combined failures of the actuators enabling morphing. Moreover, the jamming event, which is one of the main drawbacks associated with the use of electro-mechanical actuators, has been duly analyzed to observe any dynamic criticalities. Fault & Hazard Analysis (FHA) have been therefore performed as the basis for application of these devices to real aircraft. Nevertheless, the implementation of an electro-mechanical system implies several challenges related to the integration at aircraft system level: the practical need for real-time monitoring of morphing devices, power absorption levels and dynamic performance under aircraft operating conditions, suggest the use of a ground-based engineering tool, i.e. “iron bird”, for the physical integration of systems. Looking in this perspective, the Chapter 4 deals with the description of an innovative multi-modal flap idealized in the Clean Sky - Joint Technology Initiative research scenario. A distributed gear-drive electro-mechanical actuation has been fully studied and validated by an experimental campaign. Relying upon the experience gained, the encouraging outcomes led to the second stage of the project, Clean Sky 2 - Airgreen 2, encompassing the development of a more robotized flap for next regional aircraft. Numerical and experimental activities have been carried out to support the health management process in order to check the EMAs compatibility with other electrical systems too. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to “monitor” the structural conditions. A new possible approach in order to have a distributed light-weight system consists in the development of polymer-based materials filled with conductive smart fillers such as carbon nanotubes (CNTs). The thesis ends with a feasibility study about the incorporation of carbon nanomaterials into flexible coatings for composite structures (Chapter 5). Coupons made of MWCNTs embedded in typical aeronautic epoxy formulation were prepared and tested under different conditions in order to better characterize their sensing performance. Strain sensing properties were compared to commercially available strain gages and fiber optics. The results were obtained in the last training year following the involvement of the author in research activities at the University of Salerno and Materials and Structures Centre - University of Bath. One of the issues for the next developments is to consolidate these novel technologies in the current and future European projects where the smart structures topic is considered as one of the priorities for the new generation aircrafts. It is remarkable that scientists and aeronautical engineers community does not stop trying to create an intelligent machine that is increasingly inspired by nature. The spirit of research, the desire to overcome limits and a little bit of imagination are surely the elements that can guide in achieving such an ambitious goal

    Electric Porsche Drivetrain Re-design

    Get PDF
    The objective of this project was to redesign the drivetrain of the electric 1977 Porsche 911 Targa S with the goal of optimizing the drivetrain for motor efficiency and performance. The focus was to redesign the interface between the electric motor and rear wheels to maximize the efficiency of power transmission from the motor to the ground. Two systems were proposed, a fixed gear reduction and two motors with an electronic differential. The fixed gear reduction was chosen to be designed and built by replacing the stock Porsche transmission with a differential featuring a favorable gear ratio for the electric motor currently in the Porsche. The project provides detail design of the fixed gear reduction system\u27s integration into the Porsche and provides testing evidence of the improvements over the stock transmission

    RRR-robot : design of an industrial-like test facility for nonlinear robot control

    Get PDF

    PEMS BASED IN-SERVICE TESTING: PRACTICAL RECOMMENDATIONS FOR HEAVY-DUTY ENGINES/VEHICLES

    Get PDF
    This guidance document is a JRC technical support document, contributing to the development of best practices with PEMS. It shall be used primarily for the preparation, the execution and the follow-up of the emissions tests with PEMS on road heavy-duty vehicles (HDV) equipped with conventional combustion engines (gasoline, diesel, CNG, LPG). The document does not substitute either the operation manuals of the instruments or safety rules and recommendations nor official regulatory texts regarding in-use emissions tests with PEMS. The intention of this guide is to clarify some operational points of the PEMS procedure and to provide a guide for the application of PEMS inside and outside the regulatory context (In-Service Conformity Testing of heavy-duty engines as foreseen in Regulations 582/2011 and 64/2012).JRC.F.8-Sustainable Transpor

    Modelling and Model Predictive Control of Power-Split Hybrid Powertrains for Self-Driving Vehicles

    Get PDF
    Designing an autonomous vehicle system architecture requires extensive vehicle simulation prior to its implementation on a vehicle. Simulation provides a controlled environment to test the robustness of an autonomous architecture in a variety of driving scenarios. In any autonomous vehicle project, high-fidelity modelling of the vehicle platform is important for accurate simulations. For power-split hybrid electric vehicles, modelling the powertrain for autonomous applications is particularly difficult. The mapping from accelerator and brake pedal positions to torque at the wheels can be a function of many states. Due to this complex powertrain behavior, it is challenging to develop vehicle dynamics control algorithms for autonomous power-split hybrid vehicles. The 2015 Lincoln MKZ Hybrid is the selected vehicle platform of Autonomoose, the University of Waterloo’s autonomous vehicle project. Autonomoose required high-fidelity models of the vehicle’s power-split powertrain and braking systems, and a new longitudinal dynamics vehicle controller. In this thesis, a grey-box approach to modelling the Lincoln MKZ’s powertrain and braking systems is proposed. The modelling approach utilizes a combination of shallow neural networks and analytical methods to generate a mapping from accelerator and brake pedal positions to the torque at each wheel. Extensive road testing of the vehicle was performed to identify parameters of the powertrain and braking models. Experimental data was measured using a vehicle measurement system and CAN bus diagnostic signals. Model parameters were identified using optimization algorithms. The powertrain and braking models were combined with a vehicle dynamics model to form a complete high-fidelity model of the vehicle that was validated by open-loop simulation. The high-fidelity models of the powertrain and braking were simplified and combined with a longitudinal vehicle dynamics model to create a control-oriented model of the vehicle. The control-oriented model was used to design an instantaneously linearizing model predictive controller (MPC). The advantages of the MPC over a classical proportional-integral (PI) controller were proven in simulation, and a framework for implementing the MPC on the vehicle was developed. The MPC was implemented on the vehicle for track testing. Early track testing results of the MPC show superior performance to the existing PI that could improve with additional controller parameter tuning
    • …
    corecore