7,789 research outputs found

    Personalised correction, feedback, and guidance in an automated tutoring system for skills training

    Get PDF
    In addition to knowledge, in various domains skills are equally important. Active learning and training are effective forms of education. We present an automated skills training system for a database programming environment that promotes procedural knowledge acquisition and skills training. The system provides support features such as correction of solutions, feedback and personalised guidance, similar to interactions with a human tutor. Specifically, we address synchronous feedback and guidance based on personalised assessment. Each of these features is automated and includes a level of personalisation and adaptation. At the core of the system is a pattern-based error classification and correction component that analyses student input

    Implementing Web 2.0 in secondary schools: impacts, barriers and issues

    Get PDF
    One of the reports from the Web 2.0 technologies for learning at KS3 and KS4 project. This report explored Impact of Web 2.0 technologies on learning and teaching and drew upon evidence from multiple sources: field studies of 27 schools across the country; guided surveys of 2,600 school students; 100 interviews and 206 online surveys conducted with managers, teachers and technical staff in these schools; online surveys of the views of 96 parents; interviews held with 18 individual innovators in the field of Web 2.0 in education; and interviews with nine regional managers responsible for implementation of ICT at national level

    Personality representation: predicting behaviour for personalised learning support

    Get PDF
    The need for personalised support systems comes from the growing number of students that are being supported within institutions with shrinking resources. Over the last decade the use of computers and the Internet within education has become more predominant. This opens up a range of possibilities in regard to spreading that resource further and more effectively. Previous attempts to create automated systems such as intelligent tutoring systems and learning companions have been criticised for being pedagogically ineffective and relying on large knowledge sources which restrict their domain of application. More recent work on adaptive hypermedia has resolved some of these issues but has been criticised for the lack of support scope, focusing on learning paths and alternative content presentation. The student model used within these systems is also of limited scope and often based on learning history or learning styles.This research examines the potential of using a personality theory as the basis for a personalisation mechanism within an educational support system. The automated support system is designed to utilise a personality based profile to predict student behaviour. This prediction is then used to select the most appropriate feedback from a selection of reflective hints for students performing lab based programming activities. The rationale for the use of personality is simply that this is the concept psychologists use for identifying individual differences and similarities which are expressed in everyday behaviour. Therefore the research has investigated how these characteristics can be modelled in order to provide a fundamental understanding of the student user and thus be able to provide tailored support. As personality is used to describe individuals across many situations and behaviours, the use of such at the core of a personalisation mechanism may overcome the issues of scope experienced by previous methods.This research poses the following question: can a representation of personality be used to predict behaviour within a software system, in such a way, as to be able to personalise support?Putting forward the central claim that it is feasible to capture and represent personality within a software system for the purpose of personalising services.The research uses a mixed methods approach including a number and combination of quantitative and qualitative methods for both investigation and determining the feasibility of this approach.The main contribution of the thesis has been the development of a set of profiling models from psychological theories, which account for both individual differences and group similarities, as a means of personalising services. These are then applied to the development of a prototype system which utilises a personality based profile. The evidence from the evaluation of the developed prototype system has demonstrated an ability to predict student behaviour with limited success and personalise support.The limitations of the evaluation study and implementation difficulties suggest that the approach taken in this research is not feasible. Further research and exploration is required –particularly in the application to a subject area outside that of programming

    ALT-C 2010 - Conference Introduction and Abstracts

    Get PDF

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    Augmented Reality and Context Awareness for Mobile Learning Systems

    Get PDF
    Learning is one of the most interactive processes that humans practice. The level of interaction between the instructor and his or her audience has the greatest effect on the output of the learning process. Recent years have witnessed the introduction of e-learning (electronic learning), which was then followed by m-learning (mobile learning). While researchers have studied e-learning and m-learning to devise a framework that can be followed to provide the best possible output of the learning process, m-learning is still being studied in the shadow of e-learning. Such an approach might be valid to a limited extent, since both aims to provide educational material over electronic channels. However, m-learning has more space for user interaction because of the nature of the devices and their capabilities. The objective of this work is to devise a framework that utilises augmented reality and context awareness in m-learning systems to increase their level of interaction and, hence, their usability. The proposed framework was implemented and deployed over an iPhone device. The implementation focused on a specific course. Its material represented the use of augmented reality and the flow of the material utilised context awareness. Furthermore, a software prototype application for smart phones, to assess usability issues of m-learning applications, was designed and implemented. This prototype application was developed using the Java language and the Android software development kit, so that the recommended guidelines of the proposed framework were maintained. A questionnaire survey was conducted at the University, with approximately twenty-four undergraduate computer science students. Twenty-four identical smart phones were used to evaluate the developed prototype, in terms of ease of use, ease of navigating the application content, user satisfaction, attractiveness and learnability. Several validation tests were conducted on the proposed augmented reality m-learning verses m-learning. Generally, the respondents rated m-learning with augmented reality as superior to m-learning alone

    Power to the Teachers:An Exploratory Review on Artificial Intelligence in Education

    Get PDF
    This exploratory review attempted to gather evidence from the literature by shedding light on the emerging phenomenon of conceptualising the impact of artificial intelligence in education. The review utilised the PRISMA framework to review the analysis and synthesis process encompassing the search, screening, coding, and data analysis strategy of 141 items included in the corpus. Key findings extracted from the review incorporate a taxonomy of artificial intelligence applications with associated teaching and learning practice and a framework for helping teachers to develop and self-reflect on the skills and capabilities envisioned for employing artificial intelligence in education. Implications for ethical use and a set of propositions for enacting teaching and learning using artificial intelligence are demarcated. The findings of this review contribute to developing a better understanding of how artificial intelligence may enhance teachers’ roles as catalysts in designing, visualising, and orchestrating AI-enabled teaching and learning, and this will, in turn, help to proliferate AI-systems that render computational representations based on meaningful data-driven inferences of the pedagogy, domain, and learner models

    Using an e-learning tool to overcome difficulties in learning object-oriented programming

    Get PDF
    This study was motivated by the need to overcome the pedagogical hindrances experienced by introductory object-oriented programming students in order to address the high attrition rate evident among novice programmers in distance education. The initial phase of the research process involved exploring a variety of alternative visual programming environments for novices. Thereafter the selection process detailed several requirements that would define the ideal choice of the most appropriate tool. An educational tool Raptor was selected. Lastly, the core focus of this mixed method research was to evaluate undergraduate UNISA students’ perceptions of the Raptor e-learning tools with respect to the perceived effectiveness in enhancing novices’ learning experience, in an attempt to lower the barriers to object-oriented programming. Students’ perceptions collectively of the Raptor visual tool were positive and despite the fact that the sample size was too small to achieve statistical significance, these quantitative and qualitative results provide the practical basis for implementing Raptor in future. Thus providing learning opportunities suited to learner interests and needs, can lead to an enormous potential to stimulate individuals’ motivation and development in creating a more positive learning experience to overcome barriers in programming and enhance concept understanding to address the diverse needs of students in distance education that could lead to a reduced dropout rate.ComputingM. Sc. (Computing
    corecore