25,038 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Parametric Macromodels of Differential Drivers with Pre-Emphasis

    Get PDF
    This paper discusses the extraction of behavioral models of differential drivers with pre-emphasis for the assessment of signal integrity and electromagnetic compatibility effects in multigigabit data transmission systems. A suitable model structure is derived and the procedure for its estimation from port transient waveforms is illustrated. The proposed methodology is an extension of the macromodeling based on parametric relations applied to plain differential drivers. The obtained models preserve the accuracy and efficiency strengths of behavioral parametric macromodels for conventional devices. A realistic application example involving a high-speed communication path and a 3.125 Gb/s commercial driver model with pre-emphasis is presente

    A survey of the PEPA tools

    Get PDF
    This paper surveys the history and the current state of tool support for modelling with the PEPA stochastic process algebra and the PEPA nets modelling language. We discuss future directions for tool support for the PEPA family of languages.

    Correlating Cell Behavior with Tissue Topology in Embryonic Epithelia

    Get PDF
    Measurements on embryonic epithelial tissues in a diverse range of organisms have shown that the statistics of cell neighbor numbers are universal in tissues where cell proliferation is the primary cell activity. Highly simplified non-spatial models of proliferation are claimed to accurately reproduce these statistics. Using a systematic critical analysis, we show that non-spatial models are not capable of robustly describing the universal statistics observed in proliferating epithelia, indicating strong spatial correlations between cells. Furthermore we show that spatial simulations using the Subcellular Element Model are able to robustly reproduce the universal histogram. In addition these simulations are able to unify ostensibly divergent experimental data in the literature. We also analyze cell neighbor statistics in early stages of chick embryo development in which cell behaviors other than proliferation are important. We find from experimental observation that cell neighbor statistics in the primitive streak region, where cell motility and ingression are also important, show a much broader distribution. A non-spatial Markov process model provides excellent agreement with this broader histogram indicating that cells in the primitive streak may have significantly weaker spatial correlations. These findings show that cell neighbor statistics provide a potentially useful signature of collective cell behavior.Comment: PLoS one 201
    • ā€¦
    corecore