22,727 research outputs found

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Dynamics within metastable states in a mean-field spin glass

    Full text link
    In this letter we present a dynamical study of the structure of metastable states (corresponding to TAP solutions) in a mean-field spin-glass model. After reviewing known results of the statical approach, we use dynamics: starting from an initial condition thermalized at a temperature between the statical and the dynamical transition temperatures, we are able to study the relaxational dynamics within metastable states and we show that they are characterized by a true breaking of ergodicity and exponential relaxation.Comment: 5 pages, 2 postscript figures, uses rotate.sty,epsf.st

    Security Games with Information Leakage: Modeling and Computation

    Full text link
    Most models of Stackelberg security games assume that the attacker only knows the defender's mixed strategy, but is not able to observe (even partially) the instantiated pure strategy. Such partial observation of the deployed pure strategy -- an issue we refer to as information leakage -- is a significant concern in practical applications. While previous research on patrolling games has considered the attacker's real-time surveillance, our settings, therefore models and techniques, are fundamentally different. More specifically, after describing the information leakage model, we start with an LP formulation to compute the defender's optimal strategy in the presence of leakage. Perhaps surprisingly, we show that a key subproblem to solve this LP (more precisely, the defender oracle) is NP-hard even for the simplest of security game models. We then approach the problem from three possible directions: efficient algorithms for restricted cases, approximation algorithms, and heuristic algorithms for sampling that improves upon the status quo. Our experiments confirm the necessity of handling information leakage and the advantage of our algorithms

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster

    On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation

    Get PDF
    The piecewise perturbation methods (PPM) have proven to be very efficient for the numerical solution of the linear time-independent Schrödinger equation. The underlying idea is to replace the potential function piecewisely by simpler approximations and then to solve the approximating problem. The accuracy is improved by adding some perturbation corrections. Two types of approximating potentials were considered in the literature, that is piecewise constant and piecewise linear functions, giving rise to the so-called CP methods (CPM) and LP methods (LPM). Piecewise polynomials of higher degree have not been used since the approximating problem is not easy to integrate analytically. As suggested by Ixaru (Comput Phys Commun 177:897–907, 2007), this problem can be circumvented using another perturbative approach to construct an expression for the solution of the approximating problem. In this paper, we show that there is, however, no need to consider PPM based on higher-order polynomials, since these methods are equivalent to the CPM. Also, LPM is equivalent to CPM, although it was sometimes suggested in the literature that an LP method is more suited for problems with strongly varying potentials. We advocate that CP schemes can (and should) be used in all cases, since it forms the most straightforward way of devising PPM and there is no advantage in considering other piecewise polynomial perturbation methods

    Water Supply Planning under Interdependence of Actions: Theory and Application

    Get PDF
    An ongoing water supply planning problem in the Regional Municipality of Waterloo, Ontario, Canada, is studied to select the best water supply combination, within a multiple-objective framework, when actions are interdependent. The interdependencies in the problem are described and shown to be essential features. The problem is formulated as a multiple-criteria integer program with interdependent actions. Because of the large number of potential actions and the nonconvexity of the decision space, it is quite difficult to find nondominated subsets of actions. Instead, a modified goal programming technique is suggested to identify promising subsets. The appropriateness of this technique is explained, and the lessons learned in applying it to the Waterloo water supply planning problem are described
    • …
    corecore