394 research outputs found

    Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation

    Get PDF
    This paper studies testing based on labelled transition systems, presenting two test generation algorithms with their corresponding implementation relations. The first algorithm assumes that implementations communicate with their environment via symmetric, synchronous interactions. It is based on the theory of testing equivalence and preorder, as is most of the testing theory for labelled transition systems, and it is found in the literature in some slightly different variations. The second algorithm is based on the assumption that implementations communicate with their environment via inputs and outputs. Such implementations are formalized by restricting the class of labelled transition systems to those systems that can always accept input actions. For these implementations a testing theory is developed, analogous to the theory of testing equivalence and preorder. It consists of implementation relations formalizing the notion of conformance of these implementations with respect to labelled transition system specifications, test cases and test suites, test execution, the notion of passing a test suite, and the test generation algorithm, which is proved to produce sound test suites for one of the implementation relations

    Report on the Standardization Project ``Formal Methods in Conformance Testing''

    Get PDF
    This paper presents the latest developments in the “Formal Methods in Conformance Testing” (FMCT) project of ISO and ITU–T. The project has been initiated to study the role of formal description techniques in the conformance testing process. The goal is to develop a standard that defines the meaning of conformance in the context of formal description techniques. We give an account of the current status of FMCT in the standardization process as well as an overview of the technical status of the proposed standard. Moreover, we indicate some of its strong and weak points, and we give some directions for future work on FMCT

    Mastering Heterogeneous Behavioural Models

    Full text link
    Heterogeneity is one important feature of complex systems, leading to the complexity of their construction and analysis. Moving the heterogeneity at model level helps in mastering the difficulty of composing heterogeneous models which constitute a large system. We propose a method made of an algebra and structure morphisms to deal with the interaction of behavioural models, provided that they are compatible. We prove that heterogeneous models can interact in a safe way, and therefore complex heterogeneous systems can be built and analysed incrementally. The Uppaal tool is targeted for experimentations.Comment: 16 pages, a short version to appear in MEDI'201

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    Compatibility Checking for Asynchronously Communicating Software

    Get PDF
    International audienceCompatibility is a crucial problem that is encountered while constructing new software by reusing and composing existing components. A set of software components is called compatible if their composition preserves certain properties, such as deadlock freedom. However, checking compatibility for systems communicating asynchronously is an undecidable problem, and asynchronous communication is a common interaction mechanism used in building software systems. A typical approach in analyzing such systems is to bound the state space. In this paper, we take a different approach and do not impose any bounds on the number of participants or the sizes of the message buffers. Instead, we present a sufficient condition for checking compatibility of a set of asynchronously communicating components. Our approach relies on the synchronizability property which identifies systems for which interaction behavior remains the same when asynchronous communication is replaced with synchronous communication. Using the synchronizability property, we can check the compatibility of systems with unbounded message buffers by analyzing only a finite part of their behavior. We have implemented a prototype tool to automate our approach and we have applied it to many examples

    CĂŽte de Resyste -- Automated Model Based Testing

    Get PDF

    Analysis and representation of test cases generated from LOTOS

    Get PDF
    Cataloged from PDF version of article.This paper presents a method to generate, analyse and represent test cases from protocol specification. The language of temporal ordering specification (LOTOS) is mapped into an extended finite state machine (EFSM). Test cases are generated from EFSM. The generated test cases are modelled as a dependence graph. Predicate slices are used to identify infeasible test cases that must be eliminated. Redundant assignments and predicates in all the feasible test cases are removed by reducing the test case dependence graph. The reduced test case dependence graph is adapted for a local single-layer (LS) architecture. The reduced test cases for the LS architecture are enhanced to represent the tester's behaviour. The dynamic behaviour of the test cases is represented in the form of control graphs by inverting the events, assigning verdicts to the events in the enhanced dependence graph. © 1995
    • 

    corecore