84,547 research outputs found

    Supporting Constructive Learning with a Feedback Planner

    Get PDF
    A promising approach to constructing more effective computer tutors is implementing tutorial strategies that extend over multiple turns. This means that computer tutors must deal with (1) failure, (2) interruptions, (3) the need to revise their tactics, and (4) basic dialogue phenomena such as acknowledgment. To deal with these issues, we need to combine ITS technology with advances from robotics and computational linguistics. We can use reactive planning techniques from robotics to allow us to modify tutorial plans, adapting them to student input. Computational linguistics will give us guidance in handling communication management as well as building a reusable architecture for tutorial dialogue systems. A modular and reusable architecture is critical given the difficulty in constructing tutorial dialogue systems and the many domains to which we would like to apply them. In this paper, we propose such an architecture and discuss how a reactive planner in the context of this architecture can implement multi-turn tutorial strategies

    Compositional competitiveness for distributed algorithms

    Full text link
    We define a measure of competitive performance for distributed algorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure complements the latency measure of Ajtai et al., which measures how quickly an algorithm can finish tasks that start at specified times. The novel feature of the throughput measure, which distinguishes it from the latency measure, is that it is compositional: it supports a notion of algorithms that are competitive relative to a class of subroutines, with the property that an algorithm that is k-competitive relative to a class of subroutines, combined with an l-competitive member of that class, gives a combined algorithm that is kl-competitive. In particular, we prove the throughput-competitiveness of a class of algorithms for collect operations, in which each of a group of n processes obtains all values stored in an array of n registers. Collects are a fundamental building block of a wide variety of shared-memory distributed algorithms, and we show that several such algorithms are competitive relative to collects. Inserting a competitive collect in these algorithms gives the first examples of competitive distributed algorithms obtained by composition using a general construction.Comment: 33 pages, 2 figures; full version of STOC 96 paper titled "Modular competitiveness for distributed algorithms.

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks
    • …
    corecore