56 research outputs found

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Photorealistic physically based render engines: a comparative study

    Full text link
    Pérez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    Interactive global illumination on the CPU

    Get PDF
    Computing realistic physically-based global illumination in real-time remains one of the major goals in the fields of rendering and visualisation; one that has not yet been achieved due to its inherent computational complexity. This thesis focuses on CPU-based interactive global illumination approaches with an aim to develop generalisable hardware-agnostic algorithms. Interactive ray tracing is reliant on spatial and cache coherency to achieve interactive rates which conflicts with needs of global illumination solutions which require a large number of incoherent secondary rays to be computed. Methods that reduce the total number of rays that need to be processed, such as Selective rendering, were investigated to determine how best they can be utilised. The impact that selective rendering has on interactive ray tracing was analysed and quantified and two novel global illumination algorithms were developed, with the structured methodology used presented as a framework. Adaptive Inter- leaved Sampling, is a generalisable approach that combines interleaved sampling with an adaptive approach, which uses efficient component-specific adaptive guidance methods to drive the computation. Results of up to 11 frames per second were demonstrated for multiple components including participating media. Temporal Instant Caching, is a caching scheme for accelerating the computation of diffuse interreflections to interactive rates. This approach achieved frame rates exceeding 9 frames per second for the majority of scenes. Validation of the results for both approaches showed little perceptual difference when comparing against a gold-standard path-traced image. Further research into caching led to the development of a new wait-free data access control mechanism for sharing the irradiance cache among multiple rendering threads on a shared memory parallel system. By not serialising accesses to the shared data structure the irradiance values were shared among all the threads without any overhead or contention, when reading and writing simultaneously. This new approach achieved efficiencies between 77% and 92% for 8 threads when calculating static images and animations. This work demonstrates that, due to the flexibility of the CPU, CPU-based algorithms remain a valid and competitive choice for achieving global illumination interactively, and an alternative to the generally brute-force GPU-centric algorithms

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    GI-1.0: A Fast and Scalable Two-level Radiance Caching Scheme for Real-time Global Illumination

    Full text link
    Real-time global illumination is key to enabling more dynamic and physically realistic worlds in performance-critical applications such as games or any other applications with real-time constraints.Hardware-accelerated ray tracing in modern GPUs allows arbitrary intersection queries against the geometry, making it possible to evaluate indirect lighting entirely at runtime. However, only a small number of rays can be traced at each pixel to maintain high framerates at ever-increasing image resolutions. Existing solutions, such as probe-based techniques, approximate the irradiance signal at the cost of a few rays per frame but suffer from a lack of details and slow response times to changes in lighting. On the other hand, reservoir-based resampling techniques capture much more details but typically suffer from poorer performance and increased amounts of noise, making them impractical for the current generation of hardware and gaming consoles. To find a balance that achieves high lighting fidelity while maintaining a low runtime cost, we propose a solution that dynamically estimates global illumination without needing any content preprocessing, thus enabling easy integration into existing real-time rendering pipelines

    Accelerating Hash Grid and Screen-Space Photon Mapping in 3D Interactive Applications with OpenCL

    Get PDF
    Achieving interactive and realistic rendering is only possible with a combination of rendering algorithms, rendering pipelines, multi-core hardware, and parallelization APIs. This project explores and implements two photon mapping pipelines based on the work of Mara et. al [5] and Singh et. al [7] to achieve interactive rendering performance for a set of simple scenes using OpenCL and C++ to work with a GPU. In particular, both a 3D hash grid and a screen-space tiling algorithm are parallelized to accelerate photon lookup in order to compute direct and indirect lighting on visible surfaces in a scene. By using OpenCL with photon mapping interactive renderings of scenes were produced and updated live as a user moved a virtual camera. This work with OpenCL paved the way for developing a raytracing pipeline in OpenGL and for future work on the latest research in realtime realistic rendering

    Low Latency Rendering with Dataflow Architectures

    Get PDF
    The research presented in this thesis concerns latency in VR and synthetic environments. Latency is the end-to-end delay experienced by the user of an interactive computer system, between their physical actions and the perceived response to these actions. Latency is a product of the various processing, transport and buffering delays present in any current computer system. For many computer mediated applications, latency can be distracting, but it is not critical to the utility of the application. Synthetic environments on the other hand attempt to facilitate direct interaction with a digitised world. Direct interaction here implies the formation of a sensorimotor loop between the user and the digitised world - that is, the user makes predictions about how their actions affect the world, and see these predictions realised. By facilitating the formation of the this loop, the synthetic environment allows users to directly sense the digitised world, rather than the interface, and induce perceptions, such as that of the digital world existing as a distinct physical place. This has many applications for knowledge transfer and efficient interaction through the use of enhanced communication cues. The complication is, the formation of the sensorimotor loop that underpins this is highly dependent on the fidelity of the virtual stimuli, including latency. The main research questions we ask are how can the characteristics of dataflow computing be leveraged to improve the temporal fidelity of the visual stimuli, and what implications does this have on other aspects of the fidelity. Secondarily, we ask what effects latency itself has on user interaction. We test the effects of latency on physical interaction at levels previously hypothesized but unexplored. We also test for a previously unconsidered effect of latency on higher level cognitive functions. To do this, we create prototype image generators for interactive systems and virtual reality, using dataflow computing platforms. We integrate these into real interactive systems to gain practical experience of how the real perceptible benefits of alternative rendering approaches, but also what implications are when they are subject to the constraints of real systems. We quantify the differences of our systems compared with traditional systems using latency and objective image fidelity measures. We use our novel systems to perform user studies into the effects of latency. Our high performance apparatuses allow experimentation at latencies lower than previously tested in comparable studies. The low latency apparatuses are designed to minimise what is currently the largest delay in traditional rendering pipelines and we find that the approach is successful in this respect. Our 3D low latency apparatus achieves lower latencies and higher fidelities than traditional systems. The conditions under which it can do this are highly constrained however. We do not foresee dataflow computing shouldering the bulk of the rendering workload in the future but rather facilitating the augmentation of the traditional pipeline with a very high speed local loop. This may be an image distortion stage or otherwise. Our latency experiments revealed that many predictions about the effects of low latency should be re-evaluated and experimenting in this range requires great care

    Efficient Rendering of Scenes with Dynamic Lighting Using a Photons Queue and Incremental Update Algorithm

    Get PDF
    Photon mapping is a popular extension to the classic ray tracing algorithm in the field of realistic image synthesis. Moreover, it benefits from the massive parallelism computational power brought by recent developments in graphics processor hardwareand programming models. However rendering the scenes with dynamic lights stillgreatly limits the performance due to the re-construction at each rendered frame ofa kd-tree for the photons. We developed a novel approach based on the idea that storing the photons data along with the kd-tree leaf nodes data and implemented new incremental update scheme to improve the performance for dynamic lighting. The implementation is GPU-based and fully parallelized. A series of benchmarks with the prevalent existing GPU photon mapping technique is carried out to evaluate our approach. Our new technique is shown to be faster when handling scenes with dynamic lights than the existing technique while having the same image quality

    High-fidelity rendering on shared computational resources

    Get PDF
    The generation of high-fidelity imagery is a computationally expensive process and parallel computing has been traditionally employed to alleviate this cost. However, traditional parallel rendering has been restricted to expensive shared memory or dedicated distributed processors. In contrast, parallel computing on shared resources such as a computational or a desktop grid, offers a low cost alternative. But, the prevalent rendering systems are currently incapable of seamlessly handling such shared resources as they suffer from high latencies, restricted bandwidth and volatility. A conventional approach of rescheduling failed jobs in a volatile environment inhibits performance by using redundant computations. Instead, clever task subdivision along with image reconstruction techniques provides an unrestrictive fault-tolerance mechanism, which is highly suitable for high-fidelity rendering. This thesis presents novel fault-tolerant parallel rendering algorithms for effectively tapping the enormous inexpensive computational power provided by shared resources. A first of its kind system for fully dynamic high-fidelity interactive rendering on idle resources is presented which is key for providing an immediate feedback to the changes made by a user. The system achieves interactivity by monitoring and adapting computations according to run-time variations in the computational power and employs a spatio-temporal image reconstruction technique for enhancing the visual fidelity. Furthermore, algorithms described for time-constrained offline rendering of still images and animation sequences, make it possible to deliver the results in a user-defined limit. These novel methods enable the employment of variable resources in deadline-driven environments

    Efficient streaming for high fidelity imaging

    Get PDF
    Researchers and practitioners of graphics, visualisation and imaging have an ever-expanding list of technologies to account for, including (but not limited to) HDR, VR, 4K, 360°, light field and wide colour gamut. As these technologies move from theory to practice, the methods of encoding and transmitting this information need to become more advanced and capable year on year, placing greater demands on latency, bandwidth, and encoding performance. High dynamic range (HDR) video is still in its infancy; the tools for capture, transmission and display of true HDR content are still restricted to professional technicians. Meanwhile, computer graphics are nowadays near-ubiquitous, but to achieve the highest fidelity in real or even reasonable time a user must be located at or near a supercomputer or other specialist workstation. These physical requirements mean that it is not always possible to demonstrate these graphics in any given place at any time, and when the graphics in question are intended to provide a virtual reality experience, the constrains on performance and latency are even tighter. This thesis presents an overall framework for adapting upcoming imaging technologies for efficient streaming, constituting novel work across three areas of imaging technology. Over the course of the thesis, high dynamic range capture, transmission and display is considered, before specifically focusing on the transmission and display of high fidelity rendered graphics, including HDR graphics. Finally, this thesis considers the technical challenges posed by incoming head-mounted displays (HMDs). In addition, a full literature review is presented across all three of these areas, detailing state-of-the-art methods for approaching all three problem sets. In the area of high dynamic range capture, transmission and display, a framework is presented and evaluated for efficient processing, streaming and encoding of high dynamic range video using general-purpose graphics processing unit (GPGPU) technologies. For remote rendering, state-of-the-art methods of augmenting a streamed graphical render are adapted to incorporate HDR video and high fidelity graphics rendering, specifically with regards to path tracing. Finally, a novel method is proposed for streaming graphics to a HMD for virtual reality (VR). This method utilises 360° projections to transmit and reproject stereo imagery to a HMD with minimal latency, with an adaptation for the rapid local production of depth maps
    corecore