1,788 research outputs found

    Lock-Based cache coherence protocol for chip multiprocessors

    Get PDF
    Chip multiprocessor (CMP) is replacing the superscalar processor due to its huge performance gains in terms of processor speed, scalability, power consumption and economical design. Since the CMP consists of multiple processor cores on a single chip usually with share cache resources, process synchronization is an important issue that needs to be dealt with. Synchronization is usually done by the operating system in case of shared memory multiprocessors (SMP). This work studies the effect of performing synchronization by the hardware through its integration with the cache coherence protocol. A novel cache coherence protocol, called Lock-based Cache Coherence Protocol (LCCP) was designed and its performance was compared with MESI cache coherence protocol. Experiments were performed by a functional multiprocessor simulator, MP_Simplesim, that was modified to do this work. A novel interconnection network was also designed and tested in terms of performance against the traditional bus approach by means of simulation

    An accurate analysis for guaranteed performance of multiprocessor streaming applications

    Get PDF
    Already for more than a decade, consumer electronic devices have been available for entertainment, educational, or telecommunication tasks based on multimedia streaming applications, i.e., applications that process streams of audio and video samples in digital form. Multimedia capabilities are expected to become more and more commonplace in portable devices. This leads to challenges with respect to cost efficiency and quality. This thesis contributes models and analysis techniques for improving the cost efficiency, and therefore also the quality, of multimedia devices. Portable consumer electronic devices should feature flexible functionality on the one hand and low power consumption on the other hand. Those two requirements are conflicting. Therefore, we focus on a class of hardware that represents a good trade-off between those two requirements, namely on domain-specific multiprocessor systems-on-chip (MP-SoC). Our research work contributes to dynamic (i.e., run-time) optimization of MP-SoC system metrics. The central question in this area is how to ensure that real-time constraints are satisfied and the metric of interest such as perceived multimedia quality or power consumption is optimized. In these cases, we speak of quality-of-service (QoS) and power management, respectively. In this thesis, we pursue real-time constraint satisfaction that is guaranteed by the system by construction and proven mainly based on analytical reasoning. That approach is often taken in real-time systems to ensure reliable performance. Therefore the performance analysis has to be conservative, i.e. it has to use pessimistic assumptions on the unknown conditions that can negatively influence the system performance. We adopt this hypothesis as the foundation of this work. Therefore, the subject of this thesis is the analysis of guaranteed performance for multimedia applications running on multiprocessors. It is very important to note that our conservative approach is essentially different from considering only the worst-case state of the system. Unlike the worst-case approach, our approach is dynamic, i.e. it makes use of run-time characteristics of the input data and the environment of the application. The main purpose of our performance analysis method is to guide the run-time optimization. Typically, a resource or quality manager predicts the execution time, i.e., the time it takes the system to process a certain number of input data samples. When the execution times get smaller, due to dependency of the execution time on the input data, the manager can switch the control parameter for the metric of interest such that the metric improves but the system gets slower. For power optimization, that means switching to a low-power mode. If execution times grow, the manager can set parameters so that the system gets faster. For QoS management, for example, the application can be switched to a different quality mode with some degradation in perceived quality. The real-time constraints are then never violated and the metrics of interest are kept as good as possible. Unfortunately, maintaining system metrics such as power and quality at the optimal level contradicts with our main requirement, i.e., providing performance guarantees, because for this one has to give up some quality or power consumption. Therefore, the performance analysis approach developed in this thesis is not only conservative, but also accurate, so that the optimization of the metric of interest does not suffer too much from conservativity. This is not trivial to realize when two factors are combined: parallel execution on multiple processors and dynamic variation of the data-dependent execution delays. We achieve the goal of conservative and accurate performance estimation for an important class of multiprocessor platforms and multimedia applications. Our performance analysis technique is realizable in practice in QoS or power management setups. We consider a generic MP-SoC platform that runs a dynamic set of applications, each application possibly using multiple processors. We assume that the applications are independent, although it is possible to relax this requirement in the future. To support real-time constraints, we require that the platform can provide guaranteed computation, communication and memory budgets for applications. Following important trends in system-on-chip communication, we support both global buses and networks-on-chip. We represent every application as a homogeneous synchronous dataflow (HSDF) graph, where the application tasks are modeled as graph nodes, called actors. We allow dynamic datadependent actor execution delays, which makes HSDF graphs very useful to express modern streaming applications. Our reason to consider HSDF graphs is that they provide a good basic foundation for analytical performance estimation. In this setup, this thesis provides three major contributions: 1. Given an application mapped to an MP-SoC platform, given the performance guarantees for the individual computation units (the processors) and the communication unit (the network-on-chip), and given constant actor execution delays, we derive the throughput and the execution time of the system as a whole. 2. Given a mapped application and platform performance guarantees as in the previous item, we extend our approach for constant actor execution delays to dynamic datadependent actor delays. 3. We propose a global implementation trajectory that starts from the application specification and goes through design-time and run-time phases. It uses an extension of the HSDF model of computation to reflect the design decisions made along the trajectory. We present our model and trajectory not only to put the first two contributions into the right context, but also to present our vision on different parts of the trajectory, to make a complete and consistent story. Our first contribution uses the idea of so-called IPC (inter-processor communication) graphs known from the literature, whereby a single model of computation (i.e., HSDF graphs) are used to model not only the computation units, but also the communication unit (the global bus or the network-on-chip) and the FIFO (first-in-first-out) buffers that form a ‘glue’ between the computation and communication units. We were the first to propose HSDF graph structures for modeling bounded FIFO buffers and guaranteed throughput network connections for the network-on-chip communication in MP-SoCs. As a result, our HSDF models enable the formalization of the on-chip FIFO buffer capacity minimization problem under a throughput constraint as a graph-theoretic problem. Using HSDF graphs to formalize that problem helps to find the performance bottlenecks in a given solution to this problem and to improve this solution. To demonstrate this, we use the JPEG decoder application case study. Also, we show that, assuming constant – worst-case for the given JPEG image – actor delays, we can predict execution times of JPEG decoding on two processors with an accuracy of 21%. Our second contribution is based on an extension of the scenario approach. This approach is based on the observation that the dynamic behavior of an application is typically composed of a limited number of sub-behaviors, i.e., scenarios, that have similar resource requirements, i.e., similar actor execution delays in the context of this thesis. The previous work on scenarios treats only single-processor applications or multiprocessor applications that do not exploit all the flexibility of the HSDF model of computation. We develop new scenario-based techniques in the context of HSDF graphs, to derive the timing overlap between different scenarios, which is very important to achieve good accuracy for general HSDF graphs executing on multiprocessors. We exploit this idea in an application case study – the MPEG-4 arbitrarily-shaped video decoder, and demonstrate execution time prediction with an average accuracy of 11%. To the best of our knowledge, for the given setup, no other existing performance technique can provide a comparable accuracy and at the same time performance guarantees

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council

    Exploiting BSP Abstractions for Compiler Based Optimizations of GPU Applications on multi-GPU Systems

    Get PDF
    Graphics Processing Units (GPUs) are accelerators for computers and provide massive amounts of computational power and bandwidth for amenable applications. While effectively utilizing an individual GPU already requires a high level of skill, effectively utilizing multiple GPUs introduces completely new types of challenges. This work sets out to investigate how the hierarchical execution model of GPUs can be exploited to simplify the utilization of such multi-GPU systems. The investigation starts with an analysis of the memory access patterns exhibited by applications from common GPU benchmark suites. Memory access patterns are collected using custom instrumentation and a simple simulation then analyzes the patterns and identifies implicit communication across the different levels of the execution hierarchy. The analysis reveals that for most GPU applications memory accesses are highly localized and there exists a way to partition the workload so that the communication volume grows slower than the aggregated bandwidth for growing numbers of GPUs. Next, an application model based on Z-polyhedra is derived that formalizes the distribution of work across multiple GPUs and allows the identification of data dependencies. The model is then used to implement a prototype compiler that consumes single-GPU programs and produces executables that distribute GPU workloads across all available GPUs in a system. It uses static analysis to identify memory access patterns and polyhedral code generation in combination with a dynamic tracking system to efficiently resolve data dependencies. The prototype is implemented as an extension to the LLVM/Clang compiler and published in full source. The prototype compiler is then evaluated using a set of benchmark applications. While the prototype is limited in its applicability by technical issues, it provides impressive speedups of up to 12.4x on 16 GPUs for amenable applications. An in-depth analysis of the application runtime reveals that dependency resolution takes up less than 10% of the runtime, often significantly less. A discussion follows and puts the work into context by presenting and differentiating related work, reflecting critically on the work itself and an outlook of the aspects that could be explored as part of this research. The work concludes with a summary and a closing opinion

    Asynchronous programming in the abstract behavioural specification language

    Get PDF
    Chip manufacturers are rapidly moving towards so-called manycore chips with thousands of independent processors on the same silicon real estate. Current programming languages can only leverage the potential power by inserting code with low level concurrency constructs, sacrificing clarity. Alternatively, a programming language can integrate a thread of execution with a stable notion of identity, e.g., in active objects.Abstract Behavioural Specification (ABS) is a language for designing executable models of parallel and distributed object-oriented systems based on active objects, and is defined in terms of a formal operational semantics which enables a variety of static and dynamic analysis techniques for the ABS models.The overall goal of this thesis is to extend the asynchronous programming model and the corresponding analysis techniques in ABS.Algorithms and the Foundations of Software technolog

    Χρήση μοντέλου παράλληλου προγραμματισμού για σύνθεση αρχιτεκτονικών

    Get PDF
    The problem of automatically generating hardware modules from high level application representations has been at the forefront of EDA research during the last few years. In this Dissertation we introduce a methodology to automatically synthesize hardware accelerators from OpenCL applications. OpenCL is a recent industry supported standard for writing programs that execute on multicore platforms and accelerators such as GPUs. Our methodology maps OpenCL kernels into hardware accelerators based on architectural templates that explicitly decouple computation from memory communication whenever this is possible. The templates can be tuned to provide a wide repertoire of accelerators that meet user performance requirements and FPGA device characteristics. Furthermore a set of high- and low-level compiler optimizations is applied to generate optimized accelerators. Our experimental evaluation shows that the generated accelerators are tuned efficiently to match the applications memory access pattern and computational complexity and to achieve user performance requirements. An important objective of our tool is to expand the FPGA development user base to software engineers thereby expanding the scope of FPGAs beyond the realm of hardware design.To πρόβλημα της αυτόματης δημιουργίας μονάδων υλικό από παραστάσεις υψηλού επιπέδου εφαρμογής είναι στην πρώτη γραμμή της EDA έρευνας κατά τη διάρκεια των τελευταίων ετών. Σε αυτή την διατριβή παρουσιάζουμε μια μεθοδολογία για τη αυτόματη σύνθεση επιταχυντές υλικού από εφαρμογές OpenCL. OpenCL είναι ένα πρόσφατο πρότυπο για τη σύνταξη των προγραμμάτων που εκτελούνται σε πλατφόρμες πολλαπλών πυρήνων και επιταχυντές όπως GPUs. Η μεθοδολογία μας μετατρέπει προγράμματα OpenCL σε επιταχυντές υλικού με βάση αρχιτεκτονικά πρότυπα που ρητά αποσυνδέει τους υπολογισμούς από την μεταφορά δεδομένων από/προς την μνήμη όποτε αυτό είναι δυνατό. Τα πρότυπα μπορούν να συντονιστούν ώστε να παρέχουν ένα ευρύ ρεπερτόριο από επιταχυντές που πληρούν τις απαιτήσεις απόδοσης των χρηστών και τα χαρακτηριστικά της συσκευής FPGA. Επιπλέον ένα σύνολο υψηλής και χαμηλής στάθμης βελτιστοποιήσεις μεταγλωττιστή εφαρμόζεται για να παράγει βελτιστοποιημένα επιταχυντές. Η πειραματική αξιολόγηση δείχνει ότι οι επιταχυντές που δημιουργούνται αποτελεσματικά συντονισμένοι για να ταιριάζει με το μοτίβο πρόσβασης στην μνήμη κάθε εφαρμογής και την υπολογιστική πολυπλοκότητα και να επιτύχουν τις απαιτήσεις απόδοσης των χρηστών. Ένας σημαντικός στόχος του εργαλείου μας είναι η επέκταση της βάσης χρηστών πλατφόρμες FPGA για μηχανικούς λογισμικού ώστε να γίνει ανάπτυξη FPGA συστήματα από μηχανικούς λογισμικού χωρίς την ανάγκη για εμπειρία σχεδιασμού υλικού

    Open predicate path expressions for distributed environments: notation, implementation, and extensions

    Get PDF
    This dissertation introduces open predicate path expressions --a non-procedural, very-high-level language notation for the synchronization of concurrent accesses to shared data in distributed computer systems. The target environment is one in which resource modules (totally encapsulated instances of abstract data types) are the basic building blocks in a network of conventional, von Neumann computers or of functional, highly parallel machines. Each resource module will contain two independent submodules: a synchronization submodule which coordinates requests for access to the resource\u27s data and an access-mechanism submodule which localizes the code for operations on that data;Open predicate path expressions are proposed as a specification language for the synchronization submodule and represent a blend of two existing path notations: open path expressions and predicate path expressions. Motivations for the adoption of this new notation are presented, and an implementation semantics for the notation is presented in the form of dataflow graphs;An algorithm is presented which will automatically synthesize an open predicate path expression into a dataflow graph, which is then implemented by a network of communicating submodules written in either a sequential or an applicative language. Finally, an extended notation for the synchronization submodule is proposed, the purpose of which is to provide greater expressive power for certain synchronization problems which are difficult to specify using path expressions alone

    An incremental prototyping methodology for distributed systems based on formal specifications

    Get PDF
    This thesis presents a new incremental prototyping methodology for formally specified distributed systems. The objective of this methodology is to fill the gap which currently exists between the phase where a specification is simulated, generally using some sequential logical inference tool, and the phase where the modeled system has a reliable, efficient and maintainable distributed implementation in a main-stream object-oriented programming language. This objective is realized by application of a methodology we call Mixed Prototyping with Object-Orientation (in short: OOMP). This is an extension of an existing approach, namely Mixed Prototyping, that we have adapted to the object-oriented paradigm, of which we exploit the flexibility and inherent capability of modeling abstract entities. The OOMP process proceeds as follows. First, the source specifications are automatically translated into a class-based object-oriented language, thus providing a portable and high-level initial implementation. The generated class hierarchy is designed so that the developer may independently derive new sub-classes in order to make the prototype more efficient or to add functionalities that could not be specified with the given formalism. This prototyping process is performed incrementally in order to safely validate the modifications against the semantics of the specification. The resulting prototype can finally be considered as the end-user implementation of the specified software. The originality of our approach is that we exploit object-oriented programming techniques in the implementation of formal specifications in order to gain flexibility in the development process. Simultaneously, the object paradigm gives the means to harness this newly acquired freedom by allowing automatic generation of test routines which verify the conformance of the hand-written code with respect to the specifications. We demonstrate the generality of our prototyping scheme by applying it to a distributed collaborative diary program within the frame of CO-OPN (Concurrent Object-Oriented Petri Nets), a very powerful specification formalism which allows expressing concurrent and non-deterministic behaviours, and which provides structuring facilities such as modularity, encapsulation and genericity. An important effort has also been accomplished in the development or adaptation of distributed algorithms for cooperative symbolic resolution. These algorithms are used in the run-time support of the generated CO-OPN prototypes

    Integrated testing and verification system for research flight software design document

    Get PDF
    The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically
    corecore