1,889 research outputs found

    A Cross-Layer Approach for Minimizing Interference and Latency of Medium Access in Wireless Sensor Networks

    Full text link
    In low power wireless sensor networks, MAC protocols usually employ periodic sleep/wake schedule to reduce idle listening time. Even though this mechanism is simple and efficient, it results in high end-to-end latency and low throughput. On the other hand, the previously proposed CSMA/CA-based MAC protocols have tried to reduce inter-node interference at the cost of increased latency and lower network capacity. In this paper we propose IAMAC, a CSMA/CA sleep/wake MAC protocol that minimizes inter-node interference, while also reduces per-hop delay through cross-layer interactions with the network layer. Furthermore, we show that IAMAC can be integrated into the SP architecture to perform its inter-layer interactions. Through simulation, we have extensively evaluated the performance of IAMAC in terms of different performance metrics. Simulation results confirm that IAMAC reduces energy consumption per node and leads to higher network lifetime compared to S-MAC and Adaptive S-MAC, while it also provides lower latency than S-MAC. Throughout our evaluations we have considered IAMAC in conjunction with two error recovery methods, i.e., ARQ and Seda. It is shown that using Seda as the error recovery mechanism of IAMAC results in higher throughput and lifetime compared to ARQ.Comment: 17 pages, 16 figure

    Cross-layer signalling and middleware: a survey for inelastic soft real-time applications in MANETs

    Get PDF
    This paper provides a review of the different cross-layer design and protocol tuning approaches that may be used to meet a growing need to support inelastic soft real-time streams in MANETs. These streams are characterised by critical timing and throughput requirements and low packet loss tolerance levels. Many cross-layer approaches exist either for provision of QoS to soft real-time streams in static wireless networks or to improve the performance of real and non-real-time transmissions in MANETs. The common ground and lessons learned from these approaches, with a view to the potential provision of much needed support to real-time applications in MANETs, is therefore discussed

    Flexible HW-SW design and analysis of an MMT-based MANET system on FPGA

    Get PDF
    Recently there has been a rapid growth of research interests in Mobile Ad-hoc Networks (MANETs). Their infrastructureless and dynamic nature demands that new strategies be implemented on a robust wireless communication platform in order to provide efficient end-to-end communication. Many routing algorithms have been developed to serve this purpose. This thesis investigated Multi-Meshed Tree (MMT) algorithm, an integrated solution that combines routing, clustering and medium access control operations based on a common multi-meshed tree concept. It provides the robustness and redundancy inherent in mesh topologies and uses the tree branches to deliver packets. MMT is the first of its kind that enables a single algorithm to form multiple proactive routes within a cluster while supporting reactive routes between different clusters. Recent published research and simulations have shown its favorable features and results. To explore the MMT algorithm\u27s novel feature in real systems against simulation work, this work adopts Field Programmable Gate Arrays (FPGA) as the platform for wireless system implementations. Full hardware and various System-on-Chip Hardware-Software designs are developed and studied, providing a design practice that contributes to low-cost system development in the field of MANET by utilizing the evolving FPGA technology. The results show that the MMT-based systems functioned accurately and effectively; in all proposed test scenarios they demonstrated many of the features that a desired MANET routing algorithm should have: high transmission success rate, low latency, scalability, few queued packets and low overhead. The results give valuable insights into the MMT algorithm\u27s performance and facilitate its future improvements

    A Cross-Layer Modification to the DSR Routing Protocol in Wireless Mesh Networks

    Get PDF
    A cross-layer modification to the DSR routing protocol that finds high throughput paths in WMNs has been introduced in this work. The Access Efficiency Factor (AEF) has been introduced in this modification as a local congestion avoidance metric for the DSR routing mechanism as an alternative to the hop count (Hc) metric. In this modification, the selected path is identified by finding a path with the highest minimum AEF (max_min_AEF) value. The basis of this study is to compare the performance of the Hc and max_min_AEF as routing metrics for the DSR protocol in WMNs using the OPNET modeler. Performance comparisons between max_min_AEF, Metric Path (MP), and the well known ETT metrics are also carried out in this work. The results of this modification suggest that employing the max_min_AEF as a routing metric outperforms the Hc, ETT, and MP within the DSR protocol in WMNs in terms of throughput. This is because the max_min_AEF is based upon avoiding directing traffic through congested nodes where significant packet loss is likely to occur. This throughput improvement is associated with an increment in the delay time due to the long paths taken to avoid congested regions. To overcome this drawback, a further modification to the routing discovery mechanism has been made by imposing a hop count limit (HCL) on the discovered paths. Tuning the HCL allows the network manager to tradeoff throughput against delay. The choice of congestion avoidance metric exhibits another shortcoming owing to its dependency on the packet size. It penalises the smaller packets over large ones in terms of path lengths. This has been corrected for by introducing a ModAEF metric that explicitly considers the size of the packet. The ModAEF metric includes a tuning factor that allows the operator determine the level of the weighting that should be applied to the packet size to correct for this dependence

    On a Joint Physical Layer and Medium Access Control Sublayer Design for Efficient Wireless Sensor Networks and Applications

    Get PDF
    Wireless sensor networks (WSNs) are distributed networks comprising small sensing devices equipped with a processor, memory, power source, and often with the capability for short range wireless communication. These networks are used in various applications, and have created interest in WSN research and commercial uses, including industrial, scientific, household, military, medical and environmental domains. These initiatives have also been stimulated by the finalisation of the IEEE 802.15.4 standard, which defines the medium access control (MAC) and physical layer (PHY) for low-rate wireless personal area networks (LR-WPAN). Future applications may require large WSNs consisting of huge numbers of inexpensive wireless sensor nodes with limited resources (energy, bandwidth), operating in harsh environmental conditions. WSNs must perform reliably despite novel resource constraints including limited bandwidth, channel errors, and nodes that have limited operating energy. Improving resource utilisation and quality-of-service (QoS), in terms of reliable connectivity and energy efficiency, are major challenges in WSNs. Hence, the development of new WSN applications with severe resource constraints will require innovative solutions to overcome the above issues as well as improving the robustness of network components, and developing sustainable and cost effective implementation models. The main purpose of this research is to investigate methods for improving the performance of WSNs to maintain reliable network connectivity, scalability and energy efficiency. The study focuses on the IEEE 802.15.4 MAC/PHY layers and the carrier sense multiple access with collision avoidance (CSMA/CA) based networks. First, transmission power control (TPC) is investigated in multi and single-hop WSNs using typical hardware platform parameters via simulation and numerical analysis. A novel approach to testing TPC at the physical layer is developed, and results show that contrary to what has been reported from previous studies, in multi-hop networks TPC does not save energy. Next, the network initialization/self-configuration phase is addressed through investigation of the 802.15.4 MAC beacon interval setting and the number of associating nodes, in terms of association delay with the coordinator. The results raise doubt whether that the association energy consumption will outweigh the benefit of duty cycle power management for larger beacon intervals as the number of associating nodes increases. The third main contribution of this thesis is a new cross layer (PHY-MAC) design to improve network energy efficiency, reliability and scalability by minimising packet collisions due to hidden nodes. This is undertaken in response to findings in this thesis on the IEEE 802.15.4 MAC performance in the presence of hidden nodes. Specifically, simulation results show that it is the random backoff exponent that is of paramount importance for resolving collisions and not the number of times the channel is sensed before transmitting. However, the random backoff is ineffective in the presence of hidden nodes. The proposed design uses a new algorithm to increase the sensing coverage area, and therefore greatly reduces the chance of packet collisions due to hidden nodes. Moreover, the design uses a new dynamic transmission power control (TPC) to further reduce energy consumption and interference. The above proposed changes can smoothly coexist with the legacy 802.15.4 CSMA/CA. Finally, an improved two dimensional discrete time Markov chain model is proposed to capture the performance of the slotted 802.15.4 CSMA/CA. This model rectifies minor issues apparent in previous studies. The relationship derived for the successful transmission probability, throughput and average energy consumption, will provide better performance predictions. It will also offer greater insight into the strengths and weaknesses of the MAC operation, and possible enhancement opportunities. Overall, the work presented in this thesis provides several significant insights into WSN performance improvements with both existing protocols and newly designed protocols. Finally, some of the numerous challenges for future research are described

    MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey

    Full text link
    Multi-beam antenna technologies have provided lots of promising solutions to many current challenges faced in wireless mesh networks. The antenna can establish several beamformings simultaneously and initiate concurrent transmissions or receptions using multiple beams, thereby increasing the overall throughput of the network transmission. Multi-beam antenna has the ability to increase the spatial reuse, extend the transmission range, improve the transmission reliability, as well as save the power consumption. Traditional Medium Access Control (MAC) protocols for wireless network largely relied on the IEEE 802.11 Distributed Coordination Function(DCF) mechanism, however, IEEE 802.11 DCF cannot take the advantages of these unique capabilities provided by multi-beam antennas. This paper surveys the MAC protocols for wireless mesh networks with multi-beam antennas. The paper first discusses some basic information in designing multi-beam antenna system and MAC protocols, and then presents the main challenges for the MAC protocols in wireless mesh networks compared with the traditional MAC protocols. A qualitative comparison of the existing MAC protocols is provided to highlight their novel features, which provides a reference for designing the new MAC protocols. To provide some insights on future research, several open issues of MAC protocols are discussed for wireless mesh networks using multi-beam antennas.Comment: 22 pages, 6 figures, Future of Information and Communication Conference (FICC) 2019, https://doi.org/10.1007/978-3-030-12388-8_
    • …
    corecore