12 research outputs found

    Fine-grained Haptics: Sensing and Actuating Haptic Primary Colours (force, vibration, and temperature)

    Get PDF
    This thesis discusses the development of a multimodal, fine-grained visual-haptic system for teleoperation and robotic applications. This system is primarily composed of two complementary components: an input device known as the HaptiTemp sensor (combines “Haptics” and “Temperature”), which is a novel thermosensitive GelSight-like sensor, and an output device, an untethered multimodal finegrained haptic glove. The HaptiTemp sensor is a visuotactile sensor that can sense haptic primary colours known as force, vibration, and temperature. It has novel switchable UV markers that can be made visible using UV LEDs. The switchable markers feature is a real novelty of the HaptiTemp because it can be used in the analysis of tactile information from gel deformation without impairing the ability to classify or recognise images. The use of switchable markers in the HaptiTemp sensor is the solution to the trade-off between marker density and capturing high-resolution images using one sensor. The HaptiTemp sensor can measure vibrations by counting the number of blobs or pulses detected per unit time using a blob detection algorithm. For the first time, temperature detection was incorporated into a GelSight-like sensor, making the HaptiTemp sensor a haptic primary colours sensor. The HaptiTemp sensor can also do rapid temperature sensing with a 643 ms response time for the 31°C to 50°C temperature range. This fast temperature response of the HaptiTemp sensor is comparable to the withdrawal reflex response in humans. This is the first time a sensor can trigger a sensory impulse that can mimic a human reflex in the robotic community. The HaptiTemp sensor can also do simultaneous temperature sensing and image classification using a machine vision camera—the OpenMV Cam H7 Plus. This capability of simultaneous sensing and image classification has not been reported or demonstrated by any tactile sensor. The HaptiTemp sensor can be used in teleoperation because it can communicate or transmit tactile analysis and image classification results using wireless communication. The HaptiTemp sensor is the closest thing to the human skin in tactile sensing, tactile pattern recognition, and rapid temperature response. In order to feel what the HaptiTemp sensor is touching from a distance, a corresponding output device, an untethered multimodal haptic hand wearable, is developed to actuate the haptic primary colours sensed by the HaptiTemp sensor. This wearable can communicate wirelessly and has fine-grained cutaneous feedback to feel the edges or surfaces of the tactile images captured by the HaptiTemp sensor. This untethered multimodal haptic hand wearable has gradient kinesthetic force feedback that can restrict finger movements based on the force estimated by the HaptiTemp sensor. A retractable string from an ID badge holder equipped with miniservos that control the stiffness of the wire is attached to each fingertip to restrict finger movements. Vibrations detected by the HaptiTemp sensor can be actuated by the tapping motion of the tactile pins or by a buzzing minivibration motor. There is also a tiny annular Peltier device, or ThermoElectric Generator (TEG), with a mini-vibration motor, forming thermo-vibro feedback in the palm area that can be activated by a ‘hot’ or ‘cold’ signal from the HaptiTemp sensor. The haptic primary colours can also be embedded in a VR environment that can be actuated by the multimodal hand wearable. A VR application was developed to demonstrate rapid tactile actuation of edges, allowing the user to feel the contours of virtual objects. Collision detection scripts were embedded to activate the corresponding actuator in the multimodal haptic hand wearable whenever the tactile matrix simulator or hand avatar in VR collides with a virtual object. The TEG also gets warm or cold depending on the virtual object the participant has touched. Tests were conducted to explore virtual objects in 2D and 3D environments using Leap Motion control and a VR headset (Oculus Quest 2). Moreover, a fine-grained cutaneous feedback was developed to feel the edges or surfaces of a tactile image, such as the tactile images captured by the HaptiTemp sensor, or actuate tactile patterns in 2D or 3D virtual objects. The prototype is like an exoskeleton glove with 16 tactile actuators (tactors) on each fingertip, 80 tactile pins in total, made from commercially available P20 Braille cells. Each tactor can be controlled individually to enable the user to feel the edges or surfaces of images, such as the high-resolution tactile images captured by the HaptiTemp sensor. This hand wearable can be used to enhance the immersive experience in a virtual reality environment. The tactors can be actuated in a tapping manner, creating a distinct form of vibration feedback as compared to the buzzing vibration produced by a mini-vibration motor. The tactile pin height can also be varied, creating a gradient of pressure on the fingertip. Finally, the integration of the high-resolution HaptiTemp sensor, and the untethered multimodal, fine-grained haptic hand wearable is presented, forming a visuotactile system for sensing and actuating haptic primary colours. Force, vibration, and temperature sensing tests with corresponding force, vibration, and temperature actuating tests have demonstrated a unified visual-haptic system. Aside from sensing and actuating haptic primary colours, touching the edges or surfaces of the tactile images captured by the HaptiTemp sensor was carried out using the fine-grained cutaneous feedback of the haptic hand wearable

    An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.

    Get PDF
    We often interact with our environment through manual handling of objects and exploration of their properties. Object properties (OP), such as texture, stiffness, size, shape, temperature, weight, and orientation provide necessary information to successfully perform interactions. The human haptic perception system plays a key role in this. As virtual reality (VR) has been a growing field of interest with many applications, adding haptic feedback to virtual experiences is another step towards more realistic virtual interactions. However, integrating haptics in a realistic manner, requires complex technological solutions and actual user-testing in virtual environments (VEs) for verification. This review provides a comprehensive overview of recent wearable haptic devices (HDs) categorized by the OP exploration for which they have been verified in a VE. We found 13 studies which specifically addressed user-testing of wearable HDs in healthy subjects. We map and discuss the different technological solutions for different OP exploration which are useful for the design of future haptic object interactions in VR, and provide future recommendations

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Multimodal interaction: developing an interaction concept for a touchscreen incorporating tactile feedback

    Get PDF
    The touchscreen, as an alternative user interface for applications that normally require mice and keyboards, has become more and more commonplace, showing up on mobile devices, on vending machines, on ATMs and in the control panels of machines in industry, where conventional input devices cannot provide intuitive, rapid and accurate user interaction with the content of the display. The exponential growth in processing power on the PC, together with advances in understanding human communication channels, has had a significant effect on the design of usable, human-factored interfaces on touchscreens, and on the number and complexity of applications available on touchscreens. Although computer-driven touchscreen interfaces provide programmable and dynamic displays, the absence of the expected tactile cues on the hard and static surfaces of conventional touchscreens is challenging interface design and touchscreen usability, in particular for distracting, low-visibility environments. Current technology allows the human tactile modality to be used in touchscreens. While the visual channel converts graphics and text unidirectionally from the computer to the end user, tactile communication features a bidirectional information flow to and from the user as the user perceives and acts on the environment and the system responds to changing contextual information. Tactile sensations such as detents and pulses provide users with cues that make selecting and controlling a more intuitive process. Tactile features can compensate for deficiencies in some of the human senses, especially in tasks which carry a heavy visual or auditory burden. In this study, an interaction concept for tactile touchscreens is developed with a view to employing the key characteristics of the human sense of touch effectively and efficiently, especially in distracting environments where vision is impaired and hearing is overloaded. As a first step toward improving the usability of touchscreens through the integration of tactile effects, different mechanical solutions for producing motion in tactile touchscreens are investigated, to provide a basis for selecting suitable vibration directions when designing tactile displays. Building on these results, design know-how regarding tactile feedback patterns is further developed to enable dynamic simulation of UI controls, in order to give users a sense of perceiving real controls on a highly natural touch interface. To study the value of adding tactile properties to touchscreens, haptically enhanced UI controls are then further investigated with the aim of mapping haptic signals to different usage scenarios to perform primary and secondary tasks with touchscreens. The findings of the study are intended for consideration and discussion as a guide to further development of tactile stimuli, haptically enhanced user interfaces and touchscreen applications

    ISMCR 1994: Topical Workshop on Virtual Reality. Proceedings of the Fourth International Symposium on Measurement and Control in Robotics

    Get PDF
    This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation

    The 3rd International Conference on the Challenges, Opportunities, Innovations and Applications in Electronic Textiles

    Get PDF
    This reprint is a collection of papers from the E-Textiles 2021 Conference and represents the state-of-the-art from both academia and industry in the development of smart fabrics that incorporate electronic and sensing functionality. The reprint presents a wide range of applications of the technology including wearable textile devices for healthcare applications such as respiratory monitoring and functional electrical stimulation. Manufacturing approaches include printed smart materials, knitted e-textiles and flexible electronic circuit assembly within fabrics and garments. E-textile sustainability, a key future requirement for the technology, is also considered. Supplying power is a constant challenge for all wireless wearable technologies and the collection includes papers on triboelectric energy harvesting and textile-based water-activated batteries. Finally, the application of textiles antennas in both sensing and 5G wireless communications is demonstrated, where different antenna designs and their response to stimuli are presented

    A Body-and-Mind-Centric Approach to Wearable Personal Assistants

    Get PDF

    Implementing Compact Tactile Display for Fingertips with Multiple Vibrotactile Actuator and Thermoelectric Module

    No full text
    corecore