1,575 research outputs found

    Customizing floating-point units for FPGAs: Area-performance-standard trade-offs

    Get PDF
    The high integration density of current nanometer technologies allows the implementation of complex floating-point applications in a single FPGA. In this work the intrinsic complexity of floating-point operators is addressed targeting configurable devices and making design decisions providing the most suitable performance-standard compliance trade-offs. A set of floating-point libraries composed of adder/subtracter, multiplier, divisor, square root, exponential, logarithm and power function are presented. Each library has been designed taking into account special characteristics of current FPGAs, and with this purpose we have adapted the IEEE floating-point standard (software-oriented) to a custom FPGA-oriented format. Extended experimental results validate the design decisions made and prove the usefulness of reducing the format complexit

    Performance comparison of single-precision SPICE Model-Evaluation on FPGA, GPU, Cell, and multi-core processors

    Get PDF
    Automated code generation and performance tuning techniques for concurrent architectures such as GPUs, Cell and FPGAs can provide integer factor speedups over multi-core processor organizations for data-parallel, floating-point computation in SPICE model-evaluation. Our Verilog AMS compiler produces code for parallel evaluation of non-linear circuit models suitable for use in SPICE simulations where the same model is evaluated several times for all the devices in the circuit. Our compiler uses architecture specific parallelization strategies (OpenMP for multi-core, PThreads for Cell, CUDA for GPU, statically scheduled VLIW for FPGA) when producing code for these different architectures. We automatically explore different implementation configurations (e.g. unroll factor, vector length) using our performance-tuner to identify the best possible configuration for each architecture. We demonstrate speedups of 3- 182times for a Xilinx Virtex5 LX 330T, 1.3-33times for an IBM Cell, and 3-131times for an NVIDIA 9600 GT GPU over a 3 GHz Intel Xeon 5160 implementation for a variety of single-precision device models

    Application-Specific Number Representation

    No full text
    Reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), enable application- specific number representations. Well-known number formats include fixed-point, floating- point, logarithmic number system (LNS), and residue number system (RNS). Such different number representations lead to different arithmetic designs and error behaviours, thus produc- ing implementations with different performance, accuracy, and cost. To investigate the design options in number representations, the first part of this thesis presents a platform that enables automated exploration of the number representation design space. The second part of the thesis shows case studies that optimise the designs for area, latency or throughput from the perspective of number representations. Automated design space exploration in the first part addresses the following two major issues: ² Automation requires arithmetic unit generation. This thesis provides optimised arithmetic library generators for logarithmic and residue arithmetic units, which support a wide range of bit widths and achieve significant improvement over previous designs. ² Generation of arithmetic units requires specifying the bit widths for each variable. This thesis describes an automatic bit-width optimisation tool called R-Tool, which combines dynamic and static analysis methods, and supports different number systems (fixed-point, floating-point, and LNS numbers). Putting it all together, the second part explores the effects of application-specific number representation on practical benchmarks, such as radiative Monte Carlo simulation, and seismic imaging computations. Experimental results show that customising the number representations brings benefits to hardware implementations: by selecting a more appropriate number format, we can reduce the area cost by up to 73.5% and improve the throughput by 14.2% to 34.1%; by performing the bit-width optimisation, we can further reduce the area cost by 9.7% to 17.3%. On the performance side, hardware implementations with customised number formats achieve 5 to potentially over 40 times speedup over software implementations

    Stochastic-Based Pattern Recognition Analysis

    Full text link
    In this work we review the basic principles of stochastic logic and propose its application to probabilistic-based pattern-recognition analysis. The proposed technique is intrinsically a parallel comparison of input data to various pre-stored categories using Bayesian techniques. We design smart pulse-based stochastic-logic blocks to provide an efficient pattern recognition analysis. The proposed rchitecture is applied to a specific navigation problem. The resulting system is orders of magnitude faster than processor-based solutions

    Pipelining Of Double Precision Floating Point Division And Square Root Operations On Field-programmable Gate Arrays

    Get PDF
    Many space applications, such as vision-based systems, synthetic aperture radar, and radar altimetry rely increasingly on high data rate DSP algorithms. These algorithms use double precision floating point arithmetic operations. While most DSP applications can be executed on DSP processors, the DSP numerical requirements of these new space applications surpass by far the numerical capabilities of many current DSP processors. Since the tradition in DSP processing has been to use fixed point number representation, only recently have DSP processors begun to incorporate floating point arithmetic units, even though most of these units handle only single precision floating point addition/subtraction, multiplication, and occasionally division. While DSP processors are slowly evolving to meet the numerical requirements of newer space applications, FPGA densities have rapidly increased to parallel and surpass even the gate densities of many DSP processors and commodity CPUs. This makes them attractive platforms to implement compute-intensive DSP computations. Even in the presence of this clear advantage on the side of FPGAs, few attempts have been made to examine how wide precision floating point arithmetic, particularly division and square root operations, can perform on FPGAs to support these compute-intensive DSP applications. In this context, this thesis presents the sequential and pipelined designs of IEEE-754 compliant double floating point division and square root operations based on low radix digit recurrence algorithms. FPGA implementations of these algorithms have the advantage of being easily testable. In particular, the pipelined designs are synthesized based on careful partial and full unrolling of the iterations in the digit recurrence algorithms. In the overall, the implementations of the sequential and pipelined designs are common-denominator implementations which do not use any performance-enhancing embedded components such as multipliers and block memory. As these implementations exploit exclusively the fine-grain reconfigurable resources of Virtex FPGAs, they are easily portable to other FPGAs with similar reconfigurable fabrics without any major modifications. The pipelined designs of these two operations are evaluated in terms of area, throughput, and dynamic power consumption as a function of pipeline depth. Pipelining experiments reveal that the area overhead tends to remain constant regardless of the degree of pipelining to which the design is submitted, while the throughput increases with pipeline depth. In addition, these experiments reveal that pipelining reduces power considerably in shallow pipelines. Pipelining further these designs does not necessarily lead to significant power reduction. By partitioning these designs into deeper pipelines, these designs can reach throughputs close to the 100 MFLOPS mark by consuming a modest 1% to 8% of the reconfigurable fabric within a Virtex-II XC2VX000 (e.g., XC2V1000 or XC2V6000) FPGA

    An FPGA Implementation of the Powering Function with Single Precision Floating-Point Arithm

    Get PDF
    n this work we present an FPGA implementation of a single-precision °oating-point arith- metic powering unit. Our powering unit is based on an indirect method that transforms xy into a chain of operations involving a logarithm, a multiplication, an exponential function and dedicated logic for the case of a negative base. This approach allows to use the full input range for the base and exponent without limiting the range of the exponent as in direct methods. A tailored hardware implementation is exploited to increase the accuracy of the unit reducing the relative errors of the operations while high performance is obtained taking advantage of the FPGA capabilities for parallel architectures. A careful design of the pipeline stages of the involved operators allows a clock cycle of 201.3 MHz on a Xilinx Virtex-4 FPG

    Accelerating SPICE Model-Evaluation using FPGAs

    Get PDF
    Single-FPGA spatial implementations can provide an order of magnitude speedup over sequential microprocessor implementations for data-parallel, floating-point computation in SPICE model-evaluation. Model-evaluation is a key component of the SPICE circuit simulator and it is characterized by large irregular floating-point compute graphs. We show how to exploit the parallelism available in these graphs on single-FPGA designs with a low-overhead VLIW-scheduled architecture. Our architecture uses spatial floating-point operators coupled to local high-bandwidth memories and interconnected by a time-shared network. We retime operation inputs in the model-evaluation to allow independent scheduling of computation and communication. With this approach, we demonstrate speedups of 2–18× over a dual-core 3GHz Intel Xeon 5160 when using a Xilinx Virtex 5 LX330T for a variety of SPICE device models

    Accelerated Financial Applications through Specialized Hardware, FPGA

    Get PDF
    This project will investigate Field Programmable Gate Array (FPGA) technology in financial applications. FPGA implementation in high performance computing is still in its infancy. Certain companies like XtremeData inc. advertized speed improvements of 50 to 1000 times for DNA sequencing using FPGAs, while using an FPGA as a coprocessor to handle specific tasks provides two to three times more processing power. FPGA technology increases performance by parallelizing calculations. This project will specifically address speed and accuracy improvements of both fundamental and transcendental functions when implemented using FPGA technology. The results of this project will lead to a series of recommendations for effective utilization of FPGA technology in financial applications
    corecore