64,949 research outputs found

    SLIDER: Mining correlated motifs in protein-protein interaction networks

    Get PDF
    Abstract—Correlated motif mining (CMM) is the problem to find overrepresented pairs of patterns, called motif pairs, in interacting protein sequences. Algorithmic solutions for CMM thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that CMM is an NP-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the method SLIDER which uses local search with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that SLIDER outperforms existing motif-driven CMM methods and scales to large protein-protein interaction networks

    Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.

    Get PDF
    The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources

    Symbol Synchronization for Diffusive Molecular Communication Systems

    Full text link
    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop a symbol synchronization framework for molecular communication (MC) systems where we consider some practical challenges which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g. modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we propose to employ two types of molecules, one for synchronization and one for data transmission. We derive the optimal maximum likelihood (ML) symbol synchronization scheme as a performance upper bound. Since ML synchronization entails high complexity, we also propose two low-complexity synchronization schemes, namely a peak observation-based scheme and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Our simulation results reveal the effectiveness of the proposed synchronization~schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of symbol synchronization.Comment: This paper has been accepted for presentation at IEEE International Conference on Communications (ICC) 201

    Emulating Non-Abelian Topological Matter in Cold Atom Optical Lattices

    Full text link
    Certain proposed extended Bose-Hubbard models may exhibit topologically ordered ground states with excitations obeying non-Abelian braid statistics. A sufficient tuning of Hubbard parameters could yield excitation braiding rules allowing implementation of a universal set of topologically protected quantum gates. We discuss potential difficulties in realizing a model with a proposed non-Abelian topologically ordered ground state using optical lattices containing bosonic dipoles. Our direct implementation scheme does not realize the necessary anisotropic hopping, anisotropic interactions, and low temperatures

    Quantifying the benefits of vehicle pooling with shareability networks

    Get PDF
    Taxi services are a vital part of urban transportation, and a considerable contributor to traffic congestion and air pollution causing substantial adverse effects on human health. Sharing taxi trips is a possible way of reducing the negative impact of taxi services on cities, but this comes at the expense of passenger discomfort quantifiable in terms of a longer travel time. Due to computational challenges, taxi sharing has traditionally been approached on small scales, such as within airport perimeters, or with dynamical ad-hoc heuristics. However, a mathematical framework for the systematic understanding of the tradeoff between collective benefits of sharing and individual passenger discomfort is lacking. Here we introduce the notion of shareability network which allows us to model the collective benefits of sharing as a function of passenger inconvenience, and to efficiently compute optimal sharing strategies on massive datasets. We apply this framework to a dataset of millions of taxi trips taken in New York City, showing that with increasing but still relatively low passenger discomfort, cumulative trip length can be cut by 40% or more. This benefit comes with reductions in service cost, emissions, and with split fares, hinting towards a wide passenger acceptance of such a shared service. Simulation of a realistic online system demonstrates the feasibility of a shareable taxi service in New York City. Shareability as a function of trip density saturates fast, suggesting effectiveness of the taxi sharing system also in cities with much sparser taxi fleets or when willingness to share is low.Comment: Main text: 6 pages, 3 figures, SI: 24 page

    TREEOME: A framework for epigenetic and transcriptomic data integration to explore regulatory interactions controlling transcription

    Get PDF
    Motivation: Predictive modelling of gene expression is a powerful framework for the in silico exploration of transcriptional regulatory interactions through the integration of high-throughput -omics data. A major limitation of previous approaches is their inability to handle conditional and synergistic interactions that emerge when collectively analysing genes subject to different regulatory mechanisms. This limitation reduces overall predictive power and thus the reliability of downstream biological inference. Results: We introduce an analytical modelling framework (TREEOME: tree of models of expression) that integrates epigenetic and transcriptomic data by separating genes into putative regulatory classes. Current predictive modelling approaches have found both DNA methylation and histone modification epigenetic data to provide little or no improvement in accuracy of prediction of transcript abundance despite, for example, distinct anti-correlation between mRNA levels and promoter-localised DNA methylation. To improve on this, in TREEOME we evaluate four possible methods of formulating gene-level DNA methylation metrics, which provide a foundation for identifying gene-level methylation events and subsequent differential analysis, whereas most previous techniques operate at the level of individual CpG dinucleotides. We demonstrate TREEOME by integrating gene-level DNA methylation (bisulfite-seq) and histone modification (ChIP-seq) data to accurately predict genome-wide mRNA transcript abundance (RNA-seq) for H1-hESC and GM12878 cell lines. Availability: TREEOME is implemented using open-source software and made available as a pre-configured bootable reference environment. All scripts and data presented in this study are available online at http://sourceforge.net/projects/budden2015treeome/.Comment: 14 pages, 6 figure
    • …
    corecore