61 research outputs found

    Emerg Infect Dis

    Get PDF
    PMC4550154611

    Computational Approaches for Remote Monitoring of Symptoms and Activities

    Get PDF
    We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases

    Distributed Online Machine Learning for Mobile Care Systems

    Get PDF
    Appendix D: Wavecomm Tech Docs removed for copyright reasonsTelecare and especially Mobile Care Systems are getting more and more popular. They have two major benefits: first, they drastically improve the living standards and even health outcomes for patients. In addition, they allow significant cost savings for adult care by reducing the needs for medical staff. A common drawback of current Mobile Care Systems is that they are rather stationary in most cases and firmly installed in patients’ houses or flats, which makes them stay very near to or even in their homes. There is also an upcoming second category of Mobile Care Systems which are portable without restricting the moving space of the patients, but with the major drawback that they have either very limited computational abilities and only a rather low classification quality or, which is most frequently, they only have a very short runtime on battery and therefore indirectly restrict the freedom of moving of the patients once again. These drawbacks are inherently caused by the restricted computational resources and mainly the limitations of battery based power supply of mobile computer systems. This research investigates the application of novel Artificial Intelligence (AI) and Machine Learning (ML) techniques to improve the operation of 2 Mobile Care Systems. As a result, based on the Evolving Connectionist Systems (ECoS) paradigm, an innovative approach for a highly efficient and self-optimising distributed online machine learning algorithm called MECoS - Moving ECoS - is presented. It balances the conflicting needs of providing a highly responsive complex and distributed online learning classification algorithm by requiring only limited resources in the form of computational power and energy. This approach overcomes the drawbacks of current mobile systems and combines them with the advantages of powerful stationary approaches. The research concludes that the practical application of the presented MECoS algorithm offers substantial improvements to the problems as highlighted within this thesis

    Emerg Infect Dis

    Get PDF
    Emerging Infectious Diseases is providing access to these abstracts on behalf of the ICEID 2022 program committee (http://www.iceid.org), which performed peer review. ICEID is organized by the Centers for Disease Control and Prevention and Task Force for Global Health, Inc.Emerging Infectious Diseases has not edited or proofread these materials and is not responsible for inaccuracies or omissions. All information is subject to change. Comments and corrections should be brought to the attention of the authors.Suggested citation: Authors. Title [abstract]. International Conference on Emerging Infectious Diseases 2022 poster and oral presentation abstracts. Emerg Infect Dis. 2022 Sep [date cited]. http://www.cdc.gov/EID/pdfs/ICEID2022.pdf2022PMC94238981187

    Emerging infectious diseases

    Get PDF
    Emerging Infectious Diseases is providing access to these abstracts on behalf of the ICEID 2012 program committee (www.iceid.org), which performed peer review. Emerging Infectious Diseases has not edited or proofread these materials and is not responsible for inaccuracies or omissions. All information is subject to change. Comments and corrections should be brought to the attention of the authors.Influenza preparedness: lessons learned -- Policy implications and infectious diseases -- Improving preparedness for infectious diseases -- New or rapid diagnostics -- Foodborne and waterborne infections -- Effective and sustainable surveillance platforms -- Healthcare-associated infections -- Molecular epidemiology -- Antimicrobial resistance -- Tropical infections and parasitic diseases -- H1N1 influenza -- Risk Assessment -- Laboratory Support -- Zoonotic and Animal Diseases -- Viral Hepatitis -- E1. Zoonotic and animal diseases -- E2. Vaccine issues -- E3. H1N1 influenza -- E4. Novel surveillance systems -- E5. Antimicrobial resistance -- E6. Late-breakers I -- Antimicrobial resistance -- Influenza preparedness: lessons learned -- Zoonotic and animal diseases -- Improving preparedness for infectious diseases -- Laboratory support -- Early warning systems -- H1N1 influenza -- Policy implications and infectious diseases -- Modeling -- Molecular epidemiology -- Novel surveillance systems -- Tropical infections and parasitic diseases -- Strengthening public health systems -- Immigrant and refugee health -- Foodborne and waterborne infections -- Healthcare-associated infections -- Foodborne and waterborne infections -- New or rapid diagnostics -- Improving global health equity for infectious diseases -- Vulnerable populations -- Novel agents of public health importance -- Influenza preparedness: lessons learned -- Molecular epidemiology -- Zoonotic and animal diseases -- Vaccine-preventable diseases -- Outbreak investigation: lab and epi response -- H1N1 influenza -- laboratory support -- effective and sustainable surveillance platforms -- new vaccines -- vector-borne diseases and climate change -- travelers' health -- J1. Vectorborne diseases and climate change -- J2. Policy implications and infectious diseases -- J3. Influenza preparedness: lessons learned -- J4. Effective and sustainable surveillance platforms -- J5. Outbreak investigation: lab and epi response I -- J6. Late-breakers II -- Strengthening public health systems -- Bacterial/viral coinfections -- H1N1 influenza -- Novel agents of public health importance -- Foodborne and waterborne infections -- New challenges for old vaccines -- Vectorborne diseases and climate change -- Novel surveillance systems -- Geographic information systems (GIS) -- Improving global health equity for infectious diseases -- Vaccine preventable diseases -- Vulnerable populations -- Laboratory support -- Prevention challenges for respiratory diseases -- Zoonotic and animal diseases -- Outbreak investigation: lab and epi response -- Vectorborne diseases and climate change -- Outbreak investigation: lab and epi response -- Laboratory proficiency testing/quality assurance -- Effective and sustainable surveillance platforms -- Sexually transmitted diseases -- H1N1 influenza -- Surveillance of vaccine-preventable diseases -- Foodborne and waterborne infections -- Role of health communication -- Emerging opportunistic infections -- Host and microbial genetics -- Respiratory infections in special populations -- Zoonotic and animal diseases -- Laboratory support -- Antimicrobial resistance -- Vulnerable populations -- Global vaccine initiatives -- Tuberculosis -- Prevention challenges for respiratory diseases -- Infectious causes of chronic diseases -- O1. Outbreak investigation: lab and epi response II -- O2. Prevention challenges for respiratory diseases -- O3. Populations at high risk for infectious diseases -- O4. Foodborne and waterborne infections -- O5. Laboratory support: surveillance and monitoring infections -- O6. Late-breakers IIIAbstracts published in advance of the conference

    Assessment of Efficient and Sustainable Tools for Cholera Detection and Intervention in Low Resource Settings

    Get PDF
    Objective Cholera is it is estimated to infect millions of people every year resulting in over 100,000 deaths annually. There are two WHO pre-qualified oral cholera vaccines that are recommended for use in conjunction with other prevention and control strategies in endemic and outbreak areas. There is currently a limited availability of vaccine supply, therefore, its use must be administered strategically. This study sought to improve the understanding of cholera disease burden and outbreak risk worldwide through the development of simplified and sustainable tools for use in low resource settings. Methods Data from 949 clinical diarrhea cases and 1,102 environmental specimens from 7 Health Facilities were analyzed using simplified laboratory diagnostic methods to assess the cholera burden in the Far North of Cameroon. V. cholerae 01 positive specimens were analyzed to determine the genetic relationship between geographically distinct areas in Cameroon. To further evaluate tools for determining disease burden, a rapid risk assessment tool (RAT) for cholera was developed and evaluated using surveillance data from the Republic of Kenya. Results In the sentinel surveillance study, the simplified laboratory diagnostics identified outbreaks early and with no false positive results. Sequencing revealed that outbreak specimens from the Bourrha Health district in June of 2014 were related to outbreak specimens from Darak and Blangoua Health districts in October of 2014. The cholera RAT identified a few key districts in Kenya where implementation of cholera interventions, to include vaccination, may be targeted. Conclusions The simplified laboratory diagnostics demonstrated improved specificity and feasibility of use in the remote areas in our surveillance study. While V. cholerae was minimally present in the first year of surveillance, the outbreaks were detected early due to the application of our epidemiological and laboratory methodologies in the study area. We found that while the outbreaks in Bourrha, Cameroon and Darak, Cameroon were from distinct clonal complexes, there was a genetic relationship among the genotypes suggesting that the strain mutated between the geographic areas. The cholera RAT demonstrated the value of a risk factor weighting system to identify areas of heightened cholera risk for consideration of cholera intervention programs

    Emerg Infect Dis

    Get PDF

    Enhancing care for urban poor living with chronic conditions : role of local health systems

    Get PDF
    Five-year research in a poor urban neighborhood in South India reveals a high burden of chronic conditions where the majority rely on private health facilities for care. Poverty hinders people from accessing health services and those who seek care get further impoverished. Socially defined roles and positions limit women and elderly in managing care. Fragmented services imply patients having to visit more than one facility for a single episode of care. The limited use of medical records and lack of referral systems hinder continuity of care. Poor regulation of the private sector, lack of platforms for community engagement and corruption mark ineffective governance of the mixed local health system. The government sector fails to provide adequate care, whereas the private sector strives to maximize profits. Care for the poor is at best seen as charity. Our study unravels the complex nature of the local health system wherein implementing positive change requires careful consideration of local dynamics and opportunities
    • …
    corecore