79 research outputs found

    A unified approach to various orthogonalities

    Full text link

    An implementation of the QMR method based on coupled two-term recurrences

    Get PDF
    The authors have proposed a new Krylov subspace iteration, the quasi-minimal residual algorithm (QMR), for solving non-Hermitian linear systems. In the original implementation of the QMR method, the Lanczos process with look-ahead is used to generate basis vectors for the underlying Krylov subspaces. In the Lanczos algorithm, these basis vectors are computed by means of three-term recurrences. It has been observed that, in finite precision arithmetic, vector iterations based on three-term recursions are usually less robust than mathematically equivalent coupled two-term vector recurrences. This paper presents a look-ahead algorithm that constructs the Lanczos basis vectors by means of coupled two-term recursions. Implementation details are given, and the look-ahead strategy is described. A new implementation of the QMR method, based on this coupled two-term algorithm, is described. A simplified version of the QMR algorithm without look-ahead is also presented, and the special case of QMR for complex symmetric linear systems is considered. Results of numerical experiments comparing the original and the new implementations of the QMR method are reported

    Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Toeplitz systems

    Get PDF
    Systems of linear equations with Toeplitz coefficient matrices arise in many important applications. The classical Levinson algorithm computes solutions of Toeplitz systems with only O(n(sub 2)) arithmetic operations, as compared to O(n(sub 3)) operations that are needed for solving general linear systems. However, the Levinson algorithm in its original form requires that all leading principal submatrices are nonsingular. An extension of the Levinson algorithm to general Toeplitz systems is presented. The algorithm uses look-ahead to skip over exactly singular, as well as ill-conditioned leading submatrices, and, at the same time, it still fully exploits the Toeplitz structure. In our derivation of this algorithm, we make use of the intimate connection of Toeplitz matrices with formally biorthogonal polynomials

    A biconjugate gradient type algorithm on massively parallel architectures

    Get PDF
    The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. Recently, Freund and Nachtigal have proposed a novel BCG type approach, the quasi-minimal residual method (QMR), which overcomes the problems of BCG. Here, an implementation is presented of QMR based on an s-step version of the nonsymmetric look-ahead Lanczos algorithm. The main feature of the s-step Lanczos algorithm is that, in general, all inner products, except for one, can be computed in parallel at the end of each block; this is unlike the other standard Lanczos process where inner products are generated sequentially. The resulting implementation of QMR is particularly attractive on massively parallel SIMD architectures, such as the Connection Machine

    Breakdowns in the implementation of the Lánczos method for solving linear systems

    Get PDF
    AbstractThe Lánczos method for solving systems of linear equations is based on formal orthogonal polynomials. Its implementation is realized via some recurrence relationships between polynomials of a family of orthogonal polynomials or between those of two adjacent families of orthogonal polynomials. A division by zero can occur in such recurrence relations, thus causing a breakdown in the algorithm which has to be stopped. In this paper, two types of breakdowns are discussed. The true breakdowns which are due to the nonexistence of some polynomials and the ghost breakdowns which are due to the recurrence relationship used. Among all the recurrence relationships which can be used and all the algorithms for implementing the Lánczos method which came out from them, the only reliable algorithm is Lánczos/Orthodir which can only suffer from true breakdowns. It is shown how to avoid true breakdowns in this algorithm. Other algorithms are also discussed and the case of near-breakdown is treated. The same treatment applies to other methods related to Lánczos'

    The Bramble-Pasciak preconditioner for saddle point problems

    Get PDF
    The Bramble-Pasciak Conjugate Gradient method is a well known tool to solve linear systems in saddle point form. A drawback of this method in order to ensure applicability of Conjugate Gradients is the need for scaling the preconditioner which typically involves the solution of an eigenvalue problem. Here, we introduce a modified preconditioner and inner product which without scaling enable the use of a MINRES variant and can be used for the simplified Lanczos process. Furthermore, the modified preconditioner and inner product can be combined with the original Bramble-Pasciak setup to give new preconditioners and inner products. We undermine the new methods by showing numerical experiments for Stokes problems

    Preconditioned Chebyshev BiCG for parameterized linear systems

    Full text link
    We consider the problem of approximating the solution to A(μ)x(μ)=bA(\mu) x(\mu) = b for many different values of the parameter μ\mu. Here we assume A(μ)A(\mu) is large, sparse, and nonsingular with a nonlinear dependence on μ\mu. Our method is based on a companion linearization derived from an accurate Chebyshev interpolation of A(μ)A(\mu) on the interval [−a,a][-a,a], a∈Ra \in \mathbb{R}. The solution to the linearization is approximated in a preconditioned BiCG setting for shifted systems, where the Krylov basis matrix is formed once. This process leads to a short-term recurrence method, where one execution of the algorithm produces the approximation to x(μ)x(\mu) for many different values of the parameter μ∈[−a,a]\mu \in [-a,a] simultaneously. In particular, this work proposes one algorithm which applies a shift-and-invert preconditioner exactly as well as an algorithm which applies the preconditioner inexactly. The competitiveness of the algorithms are illustrated with large-scale problems arising from a finite element discretization of a Helmholtz equation with parameterized material coefficient. The software used in the simulations is publicly available online, and thus all our experiments are reproducible

    Wavelets on the Interval and Fast Wavelet Transforms

    Get PDF
    International audienceWe discuss several constructions of orthonormal wavelet bases on the interval, and we introduce a new construction that avoids some of the disadvantages of earlier constructions
    • …
    corecore