13 research outputs found

    System architecture and hardware implementations for a reconfigurable MPLS router

    Get PDF
    With extremely wide bandwidth and good channel properties, optical fibers have brought fast and reliable data transmission to today’s data communications. However, to handle heavy traffic flowing through optical physical links, much faster processing speed is required or else congestion can take place at network nodes. Also, to provide people with voice, data and all categories of multimedia services, distinguishing between different data flows is a requirement. To address these router performance, Quality of Service /Class of Service and traffic engineering issues, Multi-Protocol Label Switching (MPLS) was proposed for IP-based Internetworks. In addition, routers flexible in hardware architecture in order to support ever-evolving protocols and services without causing big infrastructure modification or replacement are also desirable. Therefore, reconfigurable hardware implementation of MPLS was proposed in this project to obtain the overall fast processing speed at network nodes. The long-term goal of this project is to develop a reconfigurable MPLS router, which uniquely integrates the best features of operations being conducted in software and in run-time-reconfigurable hardware. The scope of this thesis includes system architecture and service algorithm considerations, Verilog coding and testing for an actual device. The hardware and software co-design technique was used to partition and schedule the protocol code for execution on both a general-purpose processor and stream-based hardware. A novel RPS scheme that is practically easy to build and can realize pipelined packet-by-packet data transfer at each output was proposed to take the place of the traditional crossbar switching. In RPS, packets with variable lengths can be switched intelligently without performing packet segmentation and reassembly. Primary theoretical analysis of queuing issues was discussed and an improved multiple queue service scheduling policy UD-WRR was proposed, which can reduce packet-waiting time without sacrificing the performance. In order to have the tests carried out appropriately, dedicated circuitry for the MPLS functional block to interface a specific MAC chip was implemented as well. The hardware designs for all functions were realized with a single Field Programmable Gate Array (FPGA) device in this project. The main result presented in this thesis was the MPLS function implementation realizing a major part of layer three routing at the reconfigurable hardware level, which advanced a great step towards the goal of building a router that is both fast and flexible

    Ethernet Networks for Real-Time Use in the ATLAS Experiment

    Get PDF
    Ethernet became today's de-facto standard technology for local area networks. Defined by the IEEE 802.3 and 802.1 working groups, the Ethernet standards cover technologies deployed at the first two layers of the OSI protocol stack. The architecture of modern Ethernet networks is based on switches. The switches are devices usually built using a store-and-forward concept. At the highest level, they can be seen as a collection of queues and mathematically modelled by means of queuing theory. However, the traffic profiles on modern Ethernet networks are rather different from those assumed in classical queuing theory. The standard recommendations for evaluating the performance of network devices define the values that should be measured but do not specify a way of reconciling these values with the internal architecture of the switches. The introduction of the 10 Gigabit Ethernet standard provided a direct gateway from the LAN to the WAN by the means of the WAN PHY. Certain aspects related to the actual use of WAN PHY technology were vaguely defined by the standard. The ATLAS experiment at CERN is scheduled to start operation at CERN in 2007. The communication infrastructure of the Trigger and Data Acquisition System will be built using Ethernet networks. The real-time operational needs impose a requirement for predictable performance on the network part. In view of the diversity of the architectures of Ethernet devices, testing and modelling is required in order to make sure the full system will operate predictably. This thesis focuses on the testing part of the problem and addresses issues in determining the performance for both LAN and WAN connections. The problem of reconciling results from measurements to architectural details of the switches will also be tackled. We developed a scalable traffic generator system based on commercial-off-the-shelf Gigabit Ethernet network interface cards. The generator was able to transmit traffic at the nominal Gigabit Ethernet line rate for all frame sizes specified in the Ethernet standard. The calculation of latency was performed with accuracy in the range of +/- 200 ns. We indicate how certain features of switch architectures may be identified through accurate throughput and latency values measured for specific traffic distributions. At this stage, we present a detailed analysis of Ethernet broadcast support in modern switches. We use a similar hands-on approach to address the problem of extending Ethernet networks over long distances. Based on the 1 Gbit/s traffic generator used in the LAN, we develop a methodology to characterise point-to-point connections over long distance networks. At higher speeds, a combination of commercial traffic generators and high-end servers is employed to determine the performance of the connection. We demonstrate that the new 10 Gigabit Ethernet technology can interoperate with the installed base of SONET/SDH equipment through a series of experiments on point-to-point circuits deployed over long-distance network infrastructure in a multi-operator domain. In this process, we provide a holistic view of the end-to-end performance of 10 Gigabit Ethernet WAN PHY connections through a sequence of measurements starting at the physical transmission layer and continuing up to the transport layer of the OSI protocol stack

    On the Edge of Secure Connectivity via Software-Defined Networking

    Get PDF
    Securing communication in computer networks has been an essential feature ever since the Internet, as we know it today, was started. One of the best known and most common methods for secure communication is to use a Virtual Private Network (VPN) solution, mainly operating with an IP security (IPsec) protocol suite originally published in 1995 (RFC1825). It is clear that the Internet, and networks in general, have changed dramatically since then. In particular, the onset of the Cloud and the Internet-of-Things (IoT) have placed new demands on secure networking. Even though the IPsec suite has been updated over the years, it is starting to reach the limits of its capabilities in its present form. Recent advances in networking have thrown up Software-Defined Networking (SDN), which decouples the control and data planes, and thus centralizes the network control. SDN provides arbitrary network topologies and elastic packet forwarding that have enabled useful innovations at the network level. This thesis studies SDN-powered VPN networking and explains the benefits of this combination. Even though the main context is the Cloud, the approaches described here are also valid for non-Cloud operation and are thus suitable for a variety of other use cases for both SMEs and large corporations. In addition to IPsec, open source TLS-based VPN (e.g. OpenVPN) solutions are often used to establish secure tunnels. Research shows that a full-mesh VPN network between multiple sites can be provided using OpenVPN and it can be utilized by SDN to create a seamless, resilient layer-2 overlay for multiple purposes, including the Cloud. However, such a VPN tunnel suffers from resiliency problems and cannot meet the increasing availability requirements. The network setup proposed here is similar to Software-Defined WAN (SD-WAN) solutions and is extremely useful for applications with strict requirements for resiliency and security, even if best-effort ISP is used. IPsec is still preferred over OpenVPN for some use cases, especially by smaller enterprises. Therefore, this research also examines the possibilities for high availability, load balancing, and faster operational speeds for IPsec. We present a novel approach involving the separation of the Internet Key Exchange (IKE) and the Encapsulation Security Payload (ESP) in SDN fashion to operate from separate devices. This allows central management for the IKE while several separate ESP devices can concentrate on the heavy processing. Initially, our research relied on software solutions for ESP processing. Despite the ingenuity of the architectural concept, and although it provided high availability and good load balancing, there was no anti-replay protection. Since anti-replay protection is vital for secure communication, another approach was required. It thus became clear that the ideal solution for such large IPsec tunneling would be to have a pool of fast ESP devices, but to confine the IKE operation to a single centralized device. This would obviate the need for load balancing but still allow high availability via the device pool. The focus of this research thus turned to the study of pure hardware solutions on an FPGA, and their feasibility and production readiness for application in the Cloud context. Our research shows that FPGA works fluently in an SDN network as a standalone IPsec accelerator for ESP packets. The proposed architecture has 10 Gbps throughput, yet the latency is less than 10 µs, meaning that this architecture is especially efficient for data center use and offers increased performance and latency requirements. The high demands of the network packet processing can be met using several different approaches, so this approach is not just limited to the topics presented in this thesis. Global network traffic is growing all the time, so the development of more efficient methods and devices is inevitable. The increasing number of IoT devices will result in a lot of network traffic utilising the Cloud infrastructures in the near future. Based on the latest research, once SDN and hardware acceleration have become fully integrated into the Cloud, the future for secure networking looks promising. SDN technology will open up a wide range of new possibilities for data forwarding, while hardware acceleration will satisfy the increased performance requirements. Although it still remains to be seen whether SDN can answer all the requirements for performance, high availability and resiliency, this thesis shows that it is a very competent technology, even though we have explored only a minor fraction of its capabilities

    Investigation of performance issues affecting optical circuit and packet switched WDM networks

    Get PDF
    Optical switching represents the next step in the evolution of optical networks. This thesis describes work that was carried out to examine performance issues which can occur in two distinct varieties of optical switching networks. Slow optical switching in which lightpaths are requested, provisioned and torn down when no longer required is known as optical circuit switching (OCS). Services enabled by OCS include wavelength routing, dynamic bandwidth allocation and protection switching. With network elements such as reconfigurable optical add/drop multiplexers (ROADMs) and optical cross connects (OXCs) now being deployed along with the generalized multiprotocol label switching (GMPLS) control plane this represents the current state of the art in commercial networks. These networks often employ erbium doped fiber amplifiers (EDFAs) to boost the optical signal to noise ratio of the WDM channels and as channel configurations change, wavelength dependent gain variations in the EDFAs can lead to channel power divergence that can result in significant performance degradation. This issue is examined in detail using a reconfigurable wavelength division multiplexed (WDM) network testbed and results show the severe impact that channel reconfiguration can have on transmission performance. Following the slow switching work the focus shifts to one of the key enabling technologies for fast optical switching, namely the tunable laser. Tunable lasers which can switch on the nanosecond timescale will be required in the transmitters and wavelength converters of optical packet switching networks. The switching times and frequency drifts, both of commercially available lasers, and of novel devices are investigated and performance issues which can arise due to this frequency drift are examined. An optical packet switching transmitter based on a novel label switching technique and employing one of the fast tunable lasers is designed and employed in a dual channel WDM packet switching system. In depth performance evaluations of this labelling scheme and packet switching system show the detrimental impact that wavelength drift can have on such systems

    Network simulation for professional audio networks

    Get PDF
    Audio Engineers are required to design and deploy large multi-channel sound systems which meet a set of requirements and use networking technologies such as Firewire and Ethernet AVB. Bandwidth utilisation and parameter groupings are among the factors which need to be considered in these designs. An implementation of an extensible, generic simulation framework would allow audio engineers to easily compare protocols and networking technologies and get near real time responses with regards to bandwidth utilisation. Our hypothesis is that an application-level capability can be developed which uses a network simulation framework to enable this process and enhances the audio engineer’s experience of designing and configuring a network. This thesis presents a new, extensible simulation framework which can be utilised to simulate professional audio networks. This framework is utilised to develop an application - AudioNetSim - based on the requirements of an audio engineer. The thesis describes the AudioNetSim models and implementations for Ethernet AVB, Firewire and the AES- 64 control protocol. AudioNetSim enables bandwidth usage determination for any network configuration and connection scenario and is used to compare Firewire and Ethernet AVB bandwidth utilisation. It also applies graph theory to the circular join problem and provides a solution to detect circular joins

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Anales del XIII Congreso Argentino de Ciencias de la Computación (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterogéneas Redes de Avanzada Redes inalámbricas Redes móviles Redes activas Administración y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad informática y autenticación, privacidad Infraestructura para firma digital y certificados digitales Análisis y detección de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integración (Web Services o .Net)Red de Universidades con Carreras en Informática (RedUNCI

    Anales del XIII Congreso Argentino de Ciencias de la Computación (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterogéneas Redes de Avanzada Redes inalámbricas Redes móviles Redes activas Administración y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad informática y autenticación, privacidad Infraestructura para firma digital y certificados digitales Análisis y detección de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integración (Web Services o .Net)Red de Universidades con Carreras en Informática (RedUNCI
    corecore