1,108 research outputs found

    SPH modeling of water-related natural hazards

    Get PDF
    This paper collects some recent smoothed particle hydrodynamic (SPH) applications in the field of natural hazards connected to rapidly varied flows of both water and dense granular mixtures including sediment erosion and bed load transport. The paper gathers together and outlines the basic aspects of some relevant works dealing with flooding on complex topography, sediment scouring, fast landslide dynamics, and induced surge wave. Additionally, the preliminary results of a new study regarding the post-failure dynamics of rainfall-induced shallow landslide are presented. The paper also shows the latest advances in the use of high performance computing (HPC) techniques to accelerate computational fluid dynamic (CFD) codes through the efficient use of current computational resources. This aspect is extremely important when simulating complex three-dimensional problems that require a high computational cost and are generally involved in the modeling of water-related natural hazards of practical interest. The paper provides an overview of some widespread SPH free open source software (FOSS) codes applied to multiphase problems of theoretical and practical interest in the field of hydraulic engineering. The paper aims to provide insight into the SPH modeling of some relevant physical aspects involved in water-related natural hazards (e.g., sediment erosion and non-Newtonian rheology). The future perspectives of SPH in this application field are finally pointed out

    A Simulation Suite for Lattice-Boltzmann based Real-Time CFD Applications Exploiting Multi-Level Parallelism on Modern Multi- and Many-Core Architectures

    Get PDF
    We present a software approach to hardware-oriented numerics which builds upon an augmented, previously published open-source set of libraries facilitating portable code development and optimisation on a wide range of modern computer architectures. In order to maximise eficiency, we exploit all levels of arallelism, including vectorisation within CPU cores, the Cell BE and GPUs, shared memory thread-level parallelism between cores, and parallelism between heterogeneous distributed memory resources in clusters. To evaluate and validate our approach, we implement a collection of modular building blocks for the easy and fast assembly and development of CFD applications based on the shallow water equations: We combine the Lattice-Boltzmann method with i-uid-structure interaction techniques in order to achieve real-time simulations targeting interactive virtual environments. Our results demonstrate that recent multi-core CPUs outperform the Cell BE, while GPUs are significantly faster than conventional multi-threaded SSE code. In addition, we verify good scalability properties of our application on small clusters

    A Simulation Suite for Lattice-Boltzmann based Real-Time CFD Applications Exploiting Multi-Level Parallelism on Modern Multi- and Many-Core Architectures

    Get PDF
    We present a software approach to hardware-oriented numerics which builds upon an augmented, previously published open-source set of libraries facilitating portable code development and optimisation on a wide range of modern computer architectures. In order to maximise eficiency, we exploit all levels of arallelism, including vectorisation within CPU cores, the Cell BE and GPUs, shared memory thread-level parallelism between cores, and parallelism between heterogeneous distributed memory resources in clusters. To evaluate and validate our approach, we implement a collection of modular building blocks for the easy and fast assembly and development of CFD applications based on the shallow water equations: We combine the Lattice-Boltzmann method with i-uid-structure interaction techniques in order to achieve real-time simulations targeting interactive virtual environments. Our results demonstrate that recent multi-core CPUs outperform the Cell BE, while GPUs are significantly faster than conventional multi-threaded SSE code. In addition, we verify good scalability properties of our application on small clusters

    Numerical study of fluid-structure interaction with macro-scale particle methods

    Get PDF
    The problems of fluid-structure interaction (FSI) are often encountered in different industries as well as the nature. The macro-scale particle methods are advantageous in the FSI simulations, which include smoothed particle hydrodynamics (SPH), macro-scale pseudo- particle modelling (MaPPM), and so forth. Compared with the grid-based numerical techniques, particle methods could provide the flow and/or deformation details without complex tracking of interfaces. The progress of FSI simulation of multiphase flows with rigid particles is presented, and some major findings about heterogeneous structures are stressed. Meanwhile, weakly compressible outflow from elastic tube is investigated, and some preliminary results of flow details are presented. The possible development of macro-scale particle methods in the FSI simulation is prospected finally

    The Inertial Range of Turbulence in the Inner Heliosheath and in the Local Interstellar Medium

    Get PDF
    The governing mechanisms of magnetic field annihilation in the outer heliosphere is an intriguing topic. It is currently believed that the turbulent fluctuations pervade the inner heliosheath (IHS) and the Local Interstellar Medium (LISM). Turbulence, magnetic reconnection, or their reciprocal link may be responsible for magnetic energy conversion in the IHS.   As 1-day averaged data are typically used, the present literature mainly concerns large-scale analysis and does not describe inertial-cascade dynamics of turbulence in the IHS. Moreover, lack of spectral analysis make IHS dynamics remain critically understudied. Our group showed that 48-s MAG data from the Voyager mission are appropriate for a power spectral analysis over a frequency range of five decades, from 5e-8 Hz to 1e-2 Hz [Gallana et al., JGR 121 (2016)]. Special spectral estimation techniques are used to deal with the large amount of missing data (70%). We provide the first clear evidence of an inertial-cascade range of turbulence (spectral index is between -2 and -1.5). A spectral break at about 1e-5 Hz is found to separate the inertial range from the enegy-injection range (1/f energy decay). Instrumental noise bounds our investigation to frequencies lower than 5e-4 Hz. By considering several consecutive periods after 2009 at both V1 and V2, we show that the extension and the spectral energy decay of these two regimes may be indicators of IHS regions governed by different physical processes. We describe fluctuations’ regimes in terms of spectral energy density, anisotropy, compressibility, and statistical analysis of intermittency.   In the LISM, it was theorized that pristine interstellar turbulence may coexist with waves from the IHS, however this is still a debated topic. We observe that the fluctuating magnetic energy cascades as a power law with spectral index in the range [-1.35, -1.65] in the whole range of frequencies unaffected by noise. No spectral break is observed, nor decaying turbulence

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
    • …
    corecore