7,572 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Introducing a precise system for determining volume percentages independent of scale thickness and type of flow regime

    Get PDF
    When fluids flow into the pipes, the materials in them cause deposits to form inside the pipes over time, which is a threat to the efficiency of the equipment and their depreciation. In the present study, a method for detecting the volume percentage of two-phase flow by considering the presence of scale inside the test pipe is presented using artificial intelligence networks. The method is non-invasive and works in such a way that the detector located on one side of the pipe absorbs the photons that have passed through the other side of the pipe. These photons are emitted to the pipe by a dual source of the isotopes barium-133 and cesium-137. The Monte Carlo N Particle Code (MCNP) simulates the structure, and wavelet features are extracted from the data recorded by the detector. These features are considered Group methods of data handling (GMDH) inputs. A neural network is trained to determine the volume percentage with high accuracy independent of the thickness of the scale in the pipe. In this research, to implement a precise system for working in operating conditions, different conditions, including different flow regimes and different scale thickness values as well as different volume percentages, are simulated. The proposed system is able to determine the volume percentages with high accuracy, regardless of the type of flow regime and the amount of scale inside the pipe. The use of feature extraction techniques in the implementation of the proposed detection system not only reduces the number of detectors, reduces costs, and simplifies the system but also increases the accuracy to a good extent

    Hybrid Wavelet and Principal Component Analyses Approach for Extracting Dynamic Motion Characteristics from Displacement Series Derived from Multipath-Affected High-Rate GNSS Observations

    Get PDF
    Nowadays, the high rate GNSS (Global Navigation Satellite Systems) positioning methods are widely used as a complementary tool to other geotechnical sensors, such as accelerometers, seismometers, and inertial measurement units (IMU), to evaluate dynamic displacement responses of engineering structures. However, the most common problem in structural health monitoring (SHM) using GNSS is the presence of surrounding structures that cause multipath errors in GNSS observations. Skyscrapers and high-rise buildings in metropolitan cities are generally close to each other, and long-span bridges have towers, main cable, and suspender cables. Therefore, multipath error in GNSS observations, which is typically added to the measurement noise, is inevitable while monitoring such flexible engineering structures. Unlike other errors like atmospheric errors, which are mostly reduced or modeled out, multipath errors are the largest remaining unmanaged error sources. The high noise levels of high-rate GNSS solutions limit their structural monitoring application for detecting load-induced semi-static and dynamic displacements. This study investigates the estimation of accurate dynamic characteristics (frequency and amplitude) of structural or seismic motions derived from multipath-affected high-rate GNSS observations. To this end, a novel hybrid model using both wavelet-based multiscale principal component analysis (MSPCA) and wavelet transform (MSPCAW) is designed to extract the amplitude and frequency of both GNSS relative- and PPP- (Precise Point Positioning) derived displacement motions. To evaluate the method, a shaking table with a GNSS receiver attached to it, collecting 10 Hz data, was set up close to a building. The table was used to generate various amplitudes and frequencies of harmonic motions. In addition, 50-Hz linear variable differential transformer (LVDT) observations were collected to verify the MSMPCAW model by comparing their results. The results showed that the MSPCAW could be efficiently used to extract the dynamic characteristics of noisy dynamic movements under seismic loads. Furthermore, the dynamic behavior of seismic motions can be extracted accurately using GNSS-PPP, and its dominant frequency equals that extracted by LVDT and relative GNSS positioning method. Its accuracy in determining the amplitude approaches 91.5% relative to the LVDT observations

    Detection of faults in a scaled down doubly-fed induction generator using advanced signal processing techniques.

    Get PDF
    The study ventures into the development of a micro-based doubly fed induction generator (DFIG) test rig for fault studies. The 5kW wound rotor induction machine (WRIM) that was used in the test rig was based on a scaled-down version of a 2.5MW doubly fed induction generator (DFIG). The micromachine has been customized to make provision for implementing stator inter-turn short-circuit faults (ITSCF), rotor ITSCF and static eccentricity (SE) faults in the laboratory environment. The micromachine has been assessed under the healthy and faulty states, both before and after incorporating a converter into the rotor circuit of the machine. In each scenario, the fault signatures have been characterised by analyzing the stator current, rotor current, and the DFIG controller signals using the motor current signature analysis (MCSA) and discrete wavelet transform (DWT) analysis techniques to detect the dominant frequency components which are indicative of these faults. The purpose of the study is to evaluate and identify the most suitable combination of signals and techniques for the detection of each fault under steady-state and transient operating conditions. The analyses of the results presented in this study have indicated that characterizing the fault indicators independent of the converter system ensured clarity in the fault diagnosis process and enabled the development of a systematic fault diagnosis approach that can be applied to a controlled DFIG. It has been demonstrated that the occurrence of the ITSCFs and the SE fault in the micro-WRIM intensifies specific frequency components in the spectral plots of the stator current, rotor current, and the DFIG controller signals, which may then serve as the dominant fault indicators. These dominant components may be used as fault markers for classification and have been used for pattern recognition under the transient condition. In this case, the DWT and spectrogram plots effectively illustrated characteristic patterns of the dominant fault indicators, which were observed to evolve uniquely and more distinguishable in the rotor current signal compared to the stator current signal, before incorporating the converter in the rotor circuit. Therefore, by observing the trends portrayed in the decomposition bands and the spectrogram plots, it is deemed a reliable method of diagnosing and possibly quantifying the intensity of the faults in the machine. Once the power electronic converter was incorporated into the rotor circuit, the DFIG controller signals have been observed to be best suited for diagnosing faults in the micro-DFIG under the steady-state operating condition, as opposed to using the terminal stator or rotor current signals. The study also assessed the impact of undervoltage conditions at the point of common coupling (PCC) on the behaviour of the micro-DFIG. In this investigation, a significant rise in the faulted currents was observed for the undervoltage condition in comparison to the faulty cases under the rated grid voltage conditions. In this regard, it could be detrimental to the operation of the micro-DFIG, particularly the faulted phase windings, and the power electronic converter, should the currents exceed the rated values for extended periods

    A new frequency analysis for diagnosis of bearing defects in induction motors using the adaptive lifting scheme of wavelet transforms

    Get PDF
    This work describes a novel and effective application of the adaptive wavelet transform for the detection of bearing faults on induction motor stator current. This transform is based on a three-step nonlinear lifting scheme: a fixed prediction followed by a space-varying update and a no additive prediction. This transformation technique is used in a diversity of applications in digital signal processing and the transmission or storage of sampled data (notably the compression of the sound, or physical measurements of accuracy). Many faults in induction motor have been identified as bearing defects, rotor defects and external defects. Experimental results confirm the utility and the effectiveness of the proposed method for outer raceway fault diagnosis under no load and full load conditions

    The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient

    Full text link
    [EN] In this article a data driven approach for the classification of simultaneously occurring faults in an induction motor is presented. The problem is treated as a multi-label classification problem with each label corresponding to one specific fault. The faulty conditions examined, include the existence of a broken bar fault and the presence of mixed eccentricity with various degrees of static and dynamic eccentricity, while three "problem transformation" methods are tested and compared. For the feature extraction stage, the startup current is exploited using two well-known time-frequency (scale) transformations. This is the first time that a multi-label framework is used for the diagnosis of co-occurring fault conditions using information coming from the start-up current of induction motors. The efficiency of the proposed approach is validated using simulation data with promising results irrespective of the selected time-frequency transformation.This work was supported in part by the Spanish MINECO and FEDER program in the framework of the "Proyectos I + D del Subprograma de Generacion de Conocimiento, Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia" under Grant DPI2014-52842-P and in part by the Horizon 2020 Framework program DISIRE under the Grant Agreement 636834.Georgoulas, G.; Climente Alarcón, V.; Antonino-Daviu, J.; Tsoumas, IP.; Stylios, CD.; Arkkio, A.; Nikolakopoulos, G. (2016). The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient. IEEE Transactions on Industrial Informatics. 13(2):625-634. https://doi.org/10.1109/TII.2016.2637169S62563413
    • …
    corecore