549 research outputs found

    Parallel Computing of Particle Filtering Algorithms for Target Tracking Applications

    Get PDF
    Particle filtering has been a very popular method to solve nonlinear/non-Gaussian state estimation problems for more than twenty years. Particle filters (PFs) have found lots of applications in areas that include nonlinear filtering of noisy signals and data, especially in target tracking. However, implementation of high dimensional PFs in real-time for large-scale problems is a very challenging computational task. Parallel & distributed (P&D) computing is a promising way to deal with the computational challenges of PF methods. The main goal of this dissertation is to develop, implement and evaluate computationally efficient PF algorithms for target tracking, and thereby bring them closer to practical applications. To reach this goal, a number of parallel PF algorithms is designed and implemented using different parallel hardware architectures such as Computer Cluster, Graphics Processing Unit (GPU), and Field-Programmable Gate Array (FPGA). Proposed is an improved PF implementation for computer cluster - the Particle Transfer Algorithm (PTA), which takes advantage of the cluster architecture and outperforms significantly existing algorithms. Also, a novel GPU PF algorithm implementation is designed which is highly efficient for GPU architectures. The proposed algorithm implementations on different parallel computing environments are applied and tested for target tracking problems, such as space object tracking, ground multitarget tracking using image sensor, UAV-multisensor tracking. Comprehensive performance evaluation and comparison of the algorithms for both tracking and computational capabilities is performed. It is demonstrated by the obtained simulation results that the proposed implementations help greatly overcome the computational issues of particle filtering for realistic practical problems

    FLUX: Progressive State Estimation Based on Zakai-type Distributed Ordinary Differential Equations

    Get PDF
    We propose a homotopy continuation method called FLUX for approximating complicated probability density functions. It is based on progressive processing for smoothly morphing a given density into the desired one. Distributed ordinary differential equations (DODEs) with an artificial time γ∈[0,1] are derived for describing the evolution from the initial density to the desired final density. For a finite-dimensional parametrization, the DODEs are converted to a system of ordinary differential equations (SODEs), which are solved for γ∈[0,1] and return the desired result for γ=1. This includes parametric representations such as Gaussians or Gaussian mixtures and nonparametric setups such as sample sets. In the latter case, we obtain a particle flow between the two densities along the artificial time. FLUX is applied to state estimation in stochastic nonlinear dynamic systems by gradual inclusion of measurement information. The proposed approximation method (1) is fast, (2) can be applied to arbitrary nonlinear systems and is not limited to additive noise, (3) allows for target densities that are only known at certain points, (4) does not require optimization, (5) does not require the solution of partial differential equations, and (6) works with standard procedures for solving SODEs. This manuscript is limited to the one-dimensional case and a fixed number of parameters during the progression. Future extensions will include consideration of higher dimensions and on the fly adaption of the number of parameters

    Stochastic Particle Flow for Nonlinear High-Dimensional Filtering Problems

    Get PDF
    A series of novel filters for probabilistic inference that propose an alternative way of performing Bayesian updates, called particle flow filters, have been attracting recent interest. These filters provide approximate solutions to nonlinear filtering problems. They do so by defining a continuum of densities between the prior probability density and the posterior, i.e. the filtering density. Building on these methods' successes, we propose a novel filter. The new filter aims to address the shortcomings of sequential Monte Carlo methods when applied to important nonlinear high-dimensional filtering problems. The novel filter uses equally weighted samples, each of which is associated with a local solution of the Fokker-Planck equation. This hybrid of Monte Carlo and local parametric approximation gives rise to a global approximation of the filtering density of interest. We show that, when compared with state-of-the-art methods, the Gaussian-mixture implementation of the new filtering technique, which we call Stochastic Particle Flow, has utility in the context of benchmark nonlinear high-dimensional filtering problems. In addition, we extend the original particle flow filters for tackling multi-target multi-sensor tracking problems to enable a comparison with the new filter

    Invertible Particle Flow-based Sequential MCMC with extension to Gaussian Mixture noise models

    Get PDF
    Sequential state estimation in non-linear and non-Gaussian state spaces has a wide range of applications in statistics and signal processing. One of the most effective non-linear filtering approaches, particle filtering, suffers from weight degeneracy in high-dimensional filtering scenarios. Several avenues have been pursued to address high-dimensionality. Among these, particle flow particle filters construct effective proposal distributions by using invertible flow to migrate particles continuously from the prior distribution to the posterior, and sequential Markov chain Monte Carlo (SMCMC) methods use a Metropolis-Hastings (MH) accept-reject approach to improve filtering performance. In this paper, we propose to combine the strengths of invertible particle flow and SMCMC by constructing a composite Metropolis-Hastings (MH) kernel within the SMCMC framework using invertible particle flow. In addition, we propose a Gaussian mixture model (GMM)-based particle flow algorithm to construct effective MH kernels for multi-modal distributions. Simulation results show that for high-dimensional state estimation example problems the proposed kernels significantly increase the acceptance rate with minimal additional computational overhead and improve estimation accuracy compared with state-of-the-art filtering algorithms

    Multisensor Multiobject Tracking With High-Dimensional Object States

    Full text link
    Passive monitoring of acoustic or radio sources has important applications in modern convenience, public safety, and surveillance. A key task in passive monitoring is multiobject tracking (MOT). This paper presents a Bayesian method for multisensor MOT for challenging tracking problems where the object states are high-dimensional, and the measurements follow a nonlinear model. Our method is developed in the framework of factor graphs and the sum-product algorithm (SPA) and implemented using random samples or "particles". The multimodal probability density functions (pdfs) provided by the SPA are effectively represented by a Gaussian mixture model (GMM). To perform the operations of the SPA in high-dimensional spaces, we make use of Particle flow (PFL). Here, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance even in challenging multisensor MOT scenarios with single sensor measurements that have a lower dimension than the object positions. We perform a numerical evaluation in a passive acoustic monitoring scenario where multiple sources are tracked in 3-D from 1-D time-difference-of-arrival (TDOA) measurements provided by pairs of hydrophones. Our numerical results demonstrate favorable detection and estimation accuracy compared to state-of-the-art reference techniques.Comment: 13 page
    • …
    corecore