637 research outputs found

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-

    Improving Classification in Single and Multi-View Images

    Get PDF
    Image classification is a sub-field of computer vision that focuses on identifying objects within digital images. In order to improve image classification we must address the following areas of improvement: 1) Single and Multi-View data quality using data pre-processing techniques. 2) Enhancing deep feature learning to extract alternative representation of the data. 3) Improving decision or prediction of labels. This dissertation presents a series of four published papers that explore different improvements of image classification. In our first paper, we explore the Siamese network architecture to create a Convolution Neural Network based similarity metric. We learn the priority features that differentiate two given input images. The metric proposed achieves state-of-the-art Fβ measure. In our second paper, we explore multi-view data classification. We investigate the application of Generative Adversarial Networks GANs on Multi-view data image classification and few-shot learning. Experimental results show that our method outperforms state-of-the-art research. In our third paper, we take on the challenge of improving ResNet backbone model. For this task, we focus on improving channel attention mechanisms. We utilize Discrete Wavelet Transform compression to address the channel representation problem. Experimental results on ImageNet shows that our method outperforms baseline SENet-34 and SOTA FcaNet-34 at no extra computational cost. In our fourth paper, we investigate further the potential of orthogonalization of filters for extraction of diverse information for channel attention. We prove that using only random constant orthogonal filters is sufficient enough to achieve good channel attention. We test our proposed method using ImageNet, Places365, and Birds datasets for image classification, MS-COCO for object detection, and instance segmentation tasks. Our method outperforms FcaNet, and WaveNet and achieves the state-of-the-art results

    Improved Human Face Recognition by Introducing a New Cnn Arrangement and Hierarchical Method

    Get PDF
    Human face recognition has become one of the most attractive topics in the fields ‎of biometrics due to its wide applications. The face is a part of the body that carries ‎the most information regarding identification in human interactions. Features such ‎as the composition of facial components, skin tone, face\u27s central axis, distances ‎between eyes, and many more, alongside the other biometrics, are used ‎unconsciously by the brain to distinguish a person. Indeed, analyzing the facial ‎features could be the first method humans use to identify a person in their lives. ‎As one of the main biometric measures, human face recognition has been utilized in ‎various commercial applications over the past two decades. From banking to smart ‎advertisement and from border security to mobile applications. These are a few ‎examples that show us how far these methods have come. We can confidently say ‎that the techniques for face recognition have reached an acceptable level of ‎accuracy to be implemented in some real-life applications. However, there are other ‎applications that could benefit from improvement. Given the increasing demand ‎for the topic and the fact that nowadays, we have almost all the infrastructure that ‎we might need for our application, make face recognition an appealing topic. ‎ When we are evaluating the quality of a face recognition method, there are some ‎benchmarks that we should consider: accuracy, speed, and complexity are the main ‎parameters. Of course, we can measure other aspects of the algorithm, such as size, ‎precision, cost, etc. But eventually, every one of those parameters will contribute to ‎improving one or some of these three concepts of the method. Then again, although ‎we can see a significant level of accuracy in existing algorithms, there is still much ‎room for improvement in speed and complexity. In addition, the accuracy of the ‎mentioned methods highly depends on the properties of the face images. In other ‎words, uncontrolled situations and variables like head pose, occlusion, lighting, ‎image noise, etc., can affect the results dramatically. ‎ Human face recognition systems are used in either identification or verification. In ‎verification, the system\u27s main goal is to check if an input belongs to a pre-determined tag or a person\u27s ID. ‎Almost every face recognition system consists of four major steps. These steps are ‎pre-processing, face detection, feature extraction, and classification. Improvement ‎in each of these steps will lead to the overall enhancement of the system. In this ‎work, the main objective is to propose new, improved and enhanced methods in ‎each of those mentioned steps, evaluate the results by comparing them with other ‎existing techniques and investigate the outcome of the proposed system.

    Roadmap on Label-Free Super-resolution Imaging

    Get PDF
    Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label-free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.Peer reviewe

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics
    corecore