5,695 research outputs found

    Data fusion by using machine learning and computational intelligence techniques for medical image analysis and classification

    Get PDF
    Data fusion is the process of integrating information from multiple sources to produce specific, comprehensive, unified data about an entity. Data fusion is categorized as low level, feature level and decision level. This research is focused on both investigating and developing feature- and decision-level data fusion for automated image analysis and classification. The common procedure for solving these problems can be described as: 1) process image for region of interest\u27 detection, 2) extract features from the region of interest and 3) create learning model based on the feature data. Image processing techniques were performed using edge detection, a histogram threshold and a color drop algorithm to determine the region of interest. The extracted features were low-level features, including textual, color and symmetrical features. For image analysis and classification, feature- and decision-level data fusion techniques are investigated for model learning using and integrating computational intelligence and machine learning techniques. These techniques include artificial neural networks, evolutionary algorithms, particle swarm optimization, decision tree, clustering algorithms, fuzzy logic inference, and voting algorithms. This work presents both the investigation and development of data fusion techniques for the application areas of dermoscopy skin lesion discrimination, content-based image retrieval, and graphic image type classification --Abstract, page v

    Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19 Chest X-ray Diagnosis

    Full text link
    Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical. To reduce intra- and inter-observer variability, during the radiological assessment, computer-aided diagnostic tools have been utilized to supplement medical decision-making and subsequent disease management. Computational methods with high accuracy and robustness are required for rapid triaging of patients and aiding radiologists in the interpretation of the collected data. In this study, we propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales. We examine our model on various COVID-19 datasets acquired from different organizations to assess the generalization ability. Our experiments demonstrate that our method achieves state-of-art performance and has improved generalization capability, which is crucial for widespread deployment.Comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2023:00

    A Review on the use of Artificial Intelligence Techniques in Brain MRI Analysis

    Get PDF
    Over the past 20 years, the global research going on in Artificial Intelligence in applica-tions in medication is a venue internationally, for medical trade and creating an ener-getic research community. The Artificial Intelligence in Medicine magazine has posted a massive amount. This paper gives an overview of the history of AI applications in brain MRI analysis to research its effect at the wider studies discipline and perceive de-manding situations for its destiny. Analysis of numerous articles to create a taxono-my of research subject matters and results was done. The article is classed which might be posted between 2000 and 2018 with this taxonomy. Analyzed articles have excessive citations. Efforts are useful in figuring out popular studies works in AI primarily based on mind MRI analysis throughout specific issues. The biomedical prognosis was ruled by way of knowledge engineering research in its first decade, whilst gadget mastering, and records mining prevailed thereafter. Together these two topics have contributed a lot to the latest medical domain
    • …
    corecore