145 research outputs found

    Turbo decoder VLSI implementations for multi-standards wireless communication systems

    Get PDF

    Punctured Turbo Codes for Bandwidth-efficient Transmission

    Get PDF
    Turbo codes are the error-coding schemes applied nowadays in wireless networks. In navalapplications, the information is mostly sent through wireless networks and the data is moreprone to noise. Since very important data has to be communicated, it is necessary to get backthe original data in the receiver. In military applications also, the soldiers wear electronic jacketswhich are connected by wireless networks. In such applications, the data loss is not affordableand there is also a need to utilise the bandwidth efficiently through puncturing by means ofwhich certain bits are deleted before transmission from the output of encoder. By means of thispunctured turbo codes, bandwidth-efficient coding is achieved. Hence, it is necessary to designturbo codes with an efficient puncturing pattern so that the performance of the punctured codeis also improved in spite of deletion of few bits before transmission. This paper deals in choosingthe puncturing patterns that lead to systematic rate-compatible punctured turbo codes (RCPTCs)which also give a reduction in bit-error rate. The design criterion for choosing the best puncturingpatterns is based on the minimum weight of code words and their multiplicities. The best puncturingpattern chosen is tested for its performance by simulating turbo codes for an additive whiteGaussian noise (AWGN ) channel. Compared with the existing puncturing pattern, the patternproposed is able to achieve a gain of 0.5 dB at a bit-error rate of 10-3

    Mapping the SISO module of the Turbo decoder to a FPFA

    Get PDF
    In the CHAMELEON project a reconfigurable systems-architecture, the Field Programmable Function Array (FPFA) is introduced. FPFAs are reminiscent to FPGAs, but have a matrix of ALUs and lookup tables instead of Configurable Logic Blocks (CLBs). The FPFA can be regarded as a low power reconfigurable accelerator for an application specific domain. In this paper we show how the SISO (Soft Input Soft Output) module of the Turbo decoding algorithm can be mapped on the reconfigurable FPFA

    Wilis: Architectural Modeling of Wireless Systems

    Get PDF
    The performance of a wireless system depends on the wireless channel as well as the algorithms used in the transceiver pipelines. Because physical phenomena affect transceiver pipelines in difficult to predict ways, detailed simulation of the entire transceiver system is needed to evaluate even a single processing block. Further, some protocol validations require simulation of rare events (say, 1 bit error in 109 bits), which means the protocol must simulate for a long enough time for such events to materialize. This requirement coupled with the heavy computation typical of most physical-layer processing, rules out pure software solutions. In this paper we describe WiLIS, an FPGA-based hybrid hardware-software system designed to facilitate the development of wireless protocols. We then use WiLIS to evaluate several microarchitectures for measuring very low bit-error rates (BER). We demonstrate, for the first time, that the recently proposed SoftPHY can be implemented efficiently in hardware

    New VLSI design of a MAP/BCJR decoder.

    Get PDF
    Any communication channel suffers from different kinds of noises. By employing forward error correction (FEC) techniques, the reliability of the communication channel can be increased. One of the emerging FEC methods is turbo coding (iterative coding), which employs soft input soft output (SISO) decoding algorithms like maximum a posteriori (MAP) algorithm in its constituent decoders. In this thesis we introduce a design with lower complexity and less than 0.1dB performance loss compare to the best performance observed in Max-Log-MAP algorithm. A parallel and pipeline design of a MAP decoder suitable for ASIC (Application Specific Integrated Circuits) is used to increase the throughput of the chip. The branch metric calculation unit is studied in detail and a new design with lower complexity is proposed. The design is also flexible to communication block sizes, which makes it ideal for variable frame length communication systems. A new even-spaced quantization technique for the proposed MAP decoder is utilized. Normalization techniques are studied and a suitable technique for the Max-Log-MAP decoder is explained. The decoder chip is synthesized and implemented in a 0.18 mum six-layer metal CMOS technology. (Abstract shortened by UMI.)Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S23. Source: Masters Abstracts International, Volume: 43-05, page: 1783. Adviser: Majid Ahmadi. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Architectural Comparison Model for Area-Efficient PMAP Turbo-Decoders

    Get PDF
    In this paper, a methodology to compare highthroughput turbo decoder architectures, is proposed. The model is based on the area-efficiency estimation of different architectures and design choices. Moreover, it is specifically oriented to the exploration of Parallel-MAP (PMAP) architectures, combined with both the Max-Log-MAP algorithm and the recently proposed Local-SOVA. The main objective is the search for optimal radix-orders, capable to maximize the area-efficiency of the decoder. In this scenario, it is proved that i) radix-orders higher than 4 are expected to drastically reduce the area-efficiency; ii) the optimal choice between radix-2 and radix-4 architectures strongly depends on the area distribution between logic and memory
    • 

    corecore