1,299 research outputs found

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Real-Time 3D Image Visualization System for Digital Video on a Single Chip

    Get PDF
    Implementation of a real-time image visualization system on a reconfigurable chip (FPGA) is proposed. The system utilizes an innovative stereoscopic image capture, processing and visualization technique. Implementation is done as a two stage process. In the first stage, the stereo pair is captured using two image sensors. The captured images are then synchronized and sent to the second stage for fusion. A controller module is developed, designed, and placed on the FPGA for this purpose. The second stage is used for reconstruction and visualization of the 3D image. An innovative technique employing dual-processor architecture on the same single FPGA is developed for this purpose. The whole system is placed on a single PCB resulting in a fast processing time and the ability to view 3D video in real-time. The system is simulated, implemented, and tested on real images. Results show that this system is a low cost solution for efficient 3D video visualization using a single chip

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    Spatial Augmented Reality Using Structured Light Illumination

    Get PDF
    Spatial augmented reality is a particular kind of augmented reality technique that uses projector to blend the real objects with virtual contents. Coincidentally, as a means of 3D shape measurement, structured light illumination makes use of projector as part of its system as well. It uses the projector to generate important clues to establish the correspondence between the 2D image coordinate system and the 3D world coordinate system. So it is appealing to build a system that can carry out the functionalities of both spatial augmented reality and structured light illumination. In this dissertation, we present all the hardware platforms we developed and their related applications in spatial augmented reality and structured light illumination. Firstly, it is a dual-projector structured light 3D scanning system that has two synchronized projectors operate simultaneously, consequently it outperforms the traditional structured light 3D scanning system which only include one projector in terms of the quality of 3D reconstructions. Secondly, we introduce a modified dual-projector structured light 3D scanning system aiming at detecting and solving the multi-path interference. Thirdly, we propose an augmented reality face paint system which detects human face in a scene and paints the face with any favorite colors by projection. Additionally, the system incorporates a second camera to realize the 3D space position tracking by exploiting the principle of structured light illumination. At last, a structured light 3D scanning system with its own built-in machine vision camera is presented as the future work. So far the standalone camera has been completed from the a bare CMOS sensor. With this customized camera, we can achieve high dynamic range imaging and better synchronization between the camera and projector. But the full-blown system that includes HDMI transmitter, structured light pattern generator and synchronization logic has yet to be done due to the lack of a well designed high speed PCB

    Embedded System Architecture for Mobile Augmented Reality. Sailor Assistance Case Study

    Get PDF
    International audienceWith upcoming see-through displays new kinds of applications of Augmented Reality are emerging. However this also raises questions about the design of associated embedded systems that must be lightweight and handle object positioning, heterogeneous sensors, wireless communications as well as graphic computation. This paper studies the specific case of a promising Mobile AR processor, which is different from usual graphics applications. A complete architecture is described, designed and prototyped on FPGA. It includes hard-ware/software partitioning based on the analysis of application requirements. The specification of an original and flexible coprocessor is detailed. Choices as well as optimizations of algorithms are also described. Implementation results and performance evaluation show the relevancy of the proposed approach and demonstrate a new kind of architecture focused on object processing and optimized for the AR domain

    Real-time Image Processing on an FPGA for an Intraoperative Goggle Device

    Get PDF
    The emergence of near-infrared dyes for fluorescence imaging has had a tremendous impact in the medical field. In particular, indocyanin green (ICG) has been widely used for assessing tumor margins during intraoperative procedures. Typically, the dye is intravenously injected into the patient, and after 24 hours the dye is removed from the patient’s body, except where binding between the dye and tumor cells has occurred. This selective binding between ICG and cancerous tissue allows for easy and accurate detection of cancer margins as well as detection of metastasis throughout the patient’s body. In order to detect the binding sites, a near infrared light source at 780nm is used to excite the dye molecules, and emission is observed at 800nm. To take advantage of fluorescent imaging during intraoperative procedures, we have developed a goggle system equipped for real-time imaging in both visible and near infrared spectra. The goggle system has to be light, compact and able to perform real-time image processing to assist the physician for easy detection of tumor margins. To this end, I have developed Verilog code for a Spartan III FPGA that performs the following: 1) Real-time acquisition of both visible and near infrared spectrum images from a pair of CMOS imaging detectors; 2) Real-time image processing for both near infrared and color images in order to enhance the captured information; and 3) Real-time display of fused visible-near infrared images in high definition (HDMI) format on a goggle device. The imaging device has been successfully used for intraoperative procedures during tumor resection in animal models
    • 

    corecore