524 research outputs found

    Smart Procurement of Naturally Generated Energy (SPONGE) for Plug-in Hybrid Electric Buses

    Get PDF
    We discuss a recently introduced ECO-driving concept known as SPONGE in the context of Plug-in Hybrid Electric Buses (PHEB)'s.Examples are given to illustrate the benefits of this approach to ECO-driving. Finally, distributed algorithms to realise SPONGE are discussed, paying attention to the privacy implications of the underlying optimisation problems.Comment: This paper is recently submitted to the IEEE Transactions on Automation Science and Engineerin

    Simulation Based Studies on the Integration of Battery-Electric Vehicles in Regional Bus Services

    Get PDF
    Around the world, more and more cities already have introduced electric-powered bus fleets or are planning to do so in the near future. Thus far, electrical-powered bus fleets have not yet been applied to regional bus services. This paper analyzes the boundary conditions of the operational integration of electrically powered bus fleets in regional bus services. The paper introduces a methodical approach which can be used to identify the optimum deployment strategy for electrical-powered buses which is a combination of technological factors (e.g. dimensions of energy storage and charging technology) the operational regime to be applied (e.g. routing and scheduling). The methodical approach is exemplarily instantiated with the analysis of sample data of a bus line in a topographically challenging region. The model-driven prognosis of the vehicle’s state of charge is the basis for the definition of an optimum deployment strategy for electrical-powered buses on that line

    Topics in Electromobility and Related Applications

    Get PDF
    In this thesis, we mainly discuss four topics on Electric Vehicles (EVs) in the context of smart grid and smart transportation systems. The first topic focuses on investigating the impacts of different EV charging strategies on the grid. In Chapter 3, we present a mathematical framework for formulating different EV charging problems and investigate a range of typical EV charging strategies with respect to different actors in the power system. Using this framework, we compare the performances of all charging strategies on a common power system simulation testbed, highlighting in each case positive and negative characteristics. The second topic is concerned with the applications of EVs with Vehicle-to-Grid (V2G) capabilities. In Chapter 4, we apply certain ideas from cooperative control techniques to two V2G applications in different scenarios. In the first scenario, we harness the power of V2G technologies to reduce current imbalance in a three-phase power network. In the second scenario, we design a fair V2G programme to optimally determine the power dispatch from EVs in a microgrid scenario. The effectiveness of the proposed algorithms are verified through a variety of simulation studies. The third topic discusses an optimal distributed energy management strategy for power generation in a microgrid scenario. In Chapter 5, we adapt the synchronised version of the Additive-Increase-Multiplicative-Decrease (AIMD) algorithms to minimise a cost utility function related to the power generation costs of distributed resources. We investigate the AIMD based strategy through simulation studies and we illustrate that the performance of the proposed method is very close to the full communication centralised case. Finally, we show that this idea can be easily extended to another application including thermal balancing requirements. The last topic focuses on a new design of the Speed Advisory System (SAS) for optimising both conventional and electric vehicles networks. In Chapter 6, we demonstrate that, by using simple ideas, one can design an effective SAS for electric vehicles to minimise group energy consumption in a distributed and privacy-aware manner; Matlab simulation are give to illustrate the effectiveness of this approach. Further, we extend this idea to conventional vehicles in Chapter 7 and we show that by using some of the ideas introduced in Chapter 6, group emissions of conventional vehicles can also be minimised under the same SAS framework. SUMO simulation and Hardware-In-the-Loop (HIL) tests involving real vehicles are given to illustrate user acceptability and ease of deployment. Finally, note that many applications in this thesis are based on the theories of a class of nonlinear iterative feedback systems. For completeness, we present a rigorous proof on global convergence of consensus of such systems in Chapter 2

    Planning UAV Activities for Efficient User Coverage in Disaster Areas

    Get PDF
    Climate changes brought about by global warming as well as man-made environmental changes are often the cause of sever natural disasters. ICT, which is itself responsible for global warming due to its high carbon footprint, can play a role in alleviating the consequences of such hazards by providing reliable, resilient means of communication during a disaster crisis. In this paper, we explore the provision of wireless coverage through UAVs (Unmanned Aerial Vehicles) to complement, or replace, the traditional communication infrastructure. The use of UAVs is indeed crucial in emergency scenarios, as they allow for the quick and easy deployment of micro and pico cellular base stations where needed. We characterize the movements of UAVs and define an optimization problem to determine the best UAV coverage that maximizes the user throughput, while maintaining fairness across the different parts of the geographical area that has been affected by the disaster. To evaluate our strategy, we simulate a flooding in San Francisco and the car traffic resulting from people seeking safety on higher ground

    Analyzing the Impact of Roadmap and Vehicle Features on Electric Vehicles Energy Consumption

    Get PDF
    Electric Vehicles (EVs) market penetration rate is continuously increasing due to several aspects such as pollution reduction initiatives, government incentives, cost reduction, and fuel cost increase, among others. In the vehicular field, researchers frequently use simulators to validate their proposals before implementing them in real world, while reducing costs and time. In this work, we use our ns-3 network simulator enhanced version to demonstrate the influence of the map layout and the vehicle features on the EVs consumption. In particular, we analyze the estimated consumption of EVs simulating two different scenarios: (i) a segment of the E313 highway, located in the north of Antwerp, Belgium and (ii) the downtown of the city of Antwerp with real vehicle models. According to the results obtained, we demonstrate that the mass of the vehicle is a key factor for energy consumption in urban scenarios, while in contrast, the Air Drag Coefficient (C-d) and the Front Surface Area (FSA) play a critical role in highway environments. The most popular and powerful simulations tools do no present combined features for mobility, realistic map-layouts and electric vehicles consumption. As ns-3 is one of the most used open source based simulators in research, we have enhanced it with a realistic energy consumption feature for electric vehicles, while maintaining its original design and structure, as well as its coding style guides. Our approach allows researchers to perform comprehensive studies including EVs mobility, energy consumption, and communications, while adding a negligible overhead

    New Perspectives on Modelling and Control for Next Generation Intelligent Transport Systems

    Get PDF
    This PhD thesis contains 3 major application areas all within an Intelligent Transportation System context. The first problem we discuss considers models that make beneficial use of the large amounts of data generated in the context of traffic systems. We use a Markov chain model to do this, where important data can be taken into account in an aggregate form. The Markovian model is simple and allows for fast computation, even on low end computers, while at the same time allowing meaningful insight into a variety of traffic system related issues. This allows us to both model and enable the control of aggregate, macroscopic features of traffic networks. We then discuss three application areas for this model: the modelling of congestion, emissions, and the dissipation of energy in electric vehicles. The second problem we discuss is the control of pollution emissions in eets of hybrid vehicles. We consider parallel hybrids that have two power units, an internal combustion engine and an electric motor. We propose a scheme in which we can in uence the mix of the two engines in each car based on simple broadcast signals from a central infrastructure. The infrastructure monitors pollution levels and can thus make the vehicles react to its changes. This leads to a context aware system that can be used to avoid pollution peaks, yet does not restrict drivers unnecessarily. In this context we also discuss technical constraints that have to be taken into account in the design of traffic control algorithms that are of a microscopic nature, i.e. they affect the operation of individual vehicles. We also investigate ideas on decentralised trading of emissions. The goal here is to allocate the rights to pollute fairly among the eet's vehicles. Lastly we discuss the usage of decentralised stochastic assignment strategies in traffic applications. Systems are considered in which reservation schemes can not reliably be provided or enforced and there is a signifficant delay between decisions and their effect. In particular, our approach facilitates taking into account the feedback induced into traffic systems by providing forecasts to large groups of users. This feedback can invalidate the predictions if not modelled carefully. At the same time our proposed strategies are simple rules that are easy to follow, easy to accept, and significantly improve the performance of the systems under study. We apply this approach to three application areas, the assignment of electric vehicles to charging stations, the assignment of vehicles to parking facilities, and the assignment of customers to bike sharing stations. All discussed approaches are analysed using mathematical tools and validated through extensive simulations
    • …
    corecore