220 research outputs found

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    Designing pair of nonlinear components of a block cipher over quaternion integers

    Get PDF
    In the field of cryptography, block ciphers are widely used to provide confidentiality and integrity of data. One of the key components of a block cipher is its nonlinear substitution function. In this paper, we propose a new design methodology for the nonlinear substitution function of a block cipher, based on the use of Quaternion integers (QI). Quaternions are an extension of complex numbers that allow for more complex arithmetic operations, which can enhance the security of the cipher. We demonstrate the effectiveness of our proposed design by implementing it in a block cipher and conducting extensive security analysis. Quaternion integers give pair of substitution boxes (S-boxes) after fixing parameters but other structures give only one S-box after fixing parameters. Our results show that the proposed design provides superior security compared to existing designs, two making on a promising approach for future cryptographic applications

    Private Communications with Chaotic Code Division Multiple Access: Performance Analysis and System Design

    Get PDF
    In this dissertation we develop a class of pseudochaotic direct-sequence code division multiple access (DS/CDMA) systems that can provide private and reliable communication over wireless channels. These systems exploit the sensitive dependence of chaotic sequences on initial conditions together with the presence of channel noise to provide a substantial gap between the bit error probabilities achievable by intended and unintended receivers. We illustrate how a desired level of private communication can be achieved with a systematic selection of the system parameters. This type of privacy can be readily combined with traditional encryption methods to further ensure the protection of information against eavesdroppers. The systems we propose employ linear modulation of each user's symbol stream on a spreading sequence generated by iterating a distinct initial condition through a pseudochaotic map. We evaluate and compare the uncoded probability of error (Pr(e)) achievable by intended receivers that know the initial condition used to generate the spreading sequence to the associated Pr(e) of unintended receivers that know the modulation scheme but not the initial condition. We identify the map attributes that affect privacy, and construct algorithmic design methods for generating pseudochaotic spreading sequences that successively and substantially degrade the unintended user performance, while yielding intended user performance similar to that of conventional DS/CDMA systems. We develop efficient metrics for quantifying the unintended receiver Pr(e) and prove that it decays at a constant rate of 1/sqrt(SNR) in AWGN and fading channels. In addition, we show that this decaying rate is independent of the available degrees of diversity in fading channels, showing in the process that only intended receivers can harvest the available diversity benefits. Moreover, we illustrate that the pseudochaotic DS/CDMA systems can provide reliable multiuser communication that is inherently resilient to eavesdropping, even in the worst-case scenarios where all receivers in a network except the intended one collude to better eavesdrop on the targeted transmission. We also develop optimized digital implementation methods for generating practical pseudochaotic spreading sequences that preserve the privacy characteristics associated with the underlying chaotic spreading sequences

    Chaos and Cellular Automata-Based Substitution Box and Its Application in Cryptography

    Get PDF
    Substitution boxes are the key factor in symmetric-key cryptosystems that determines their ability to resist various cryptanalytic attacks. Creating strong substitution boxes that have multiple strong cryptographic properties at the same time is a challenging task for cryptographers. A significant amount of research has been conducted on S-boxes in the past few decades, but the resulting S-boxes have been found to be vulnerable to various cyberattacks. This paper proposes a new method for creating robust S-boxes that exhibit superior performance and possess high scores in multiple cryptographic properties. The hybrid S-box method presented in this paper is based on Chua’s circuit chaotic map, two-dimensional cellular automata, and an algebraic permutation group structure. The proposed 16×16 S-box has an excellent performance in terms of security parameters, including a minimum nonlinearity of 102, the absence of fixed points, the satisfaction of bit independence and strict avalanche criteria, a low differential uniformity of 5, a low linear approximation probability of 0.0603, and an auto-correlation function of 28. The analysis of the performance comparison indicates that the proposed S-box outperforms other state-of-the-art S-box techniques in several aspects. It possesses better attributes, such as a higher degree of inherent security and resilience, which make it more secure and less vulnerable to potential attacks

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Qualitative modeling of chaotic logical circuits and walking droplets: a dynamical systems approach

    Get PDF
    Logical circuits and wave-particle duality have been studied for most of the 20th century. During the current century scientists have been thinking differently about these well-studied systems. Specifically, there has been great interest in chaotic logical circuits and hydrodynamic quantum analogs. Traditional logical circuits are designed with minimal uncertainty. While this is straightforward to achieve with electronic logic, other logic families such as fluidic, chemical, and biological, naturally exhibit uncertainties due to their inherent nonlinearity. In recent years, engineers have been designing electronic logical systems via chaotic circuits. While traditional boolean circuits have easily determined outputs, which renders dynamical models unnecessary, chaotic logical circuits employ components that behave erratically for certain inputs. There has been an equally dramatic paradigm shift for studying wave-particle systems. In recent years, experiments with bouncing droplets (called walkers) on a vibrating fluid bath have shown that quantum analogs can be studied at the macro scale. These analogs help us ask questions about quantum mechanics that otherwise would have been inaccessible. They may eventually reveal some unforeseen properties of quantum mechanics that would close the gap between philosophical interpretations and scientific results. Both chaotic logical circuits and walking droplets have been modeled as differential equations. While many of these models are very good in reproducing the behavior observed in experiments, the equations are often too complex to analyze in detail and sometimes even too complex for tractable numerical solution. These problems can be simplified if the models are reduced to discrete dynamical systems. Fortunately, both systems are very naturally time-discrete. For the circuits, the states change very rapidly and therefore the information during the process of change is not of importance. And for the walkers, the position when a wave is produced is important, but the dynamics of the droplets in the air are not. This dissertation is an amalgam of results on chaotic logical circuits and walking droplets in the form of experimental investigations, mathematical modeling, and dynamical systems analysis. Furthermore, this thesis makes connections between the two topics and the various scientific disciplines involved in their studies

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Annales Mathematicae et Informaticae (44.)

    Get PDF

    A Critical Review of Physical Layer Security in Wireless Networking

    Get PDF
    Wireless networking has kept evolving with additional features and increasing capacity. Meanwhile, inherent characteristics of wireless networking make it more vulnerable than wired networks. In this thesis we present an extensive and comprehensive review of physical layer security in wireless networking. Different from cryptography, physical layer security, emerging from the information theoretic assessment of secrecy, could leverage the properties of wireless channel for security purpose, by either enabling secret communication without the need of keys, or facilitating the key agreement process. Hence we categorize existing literature into two main branches, namely keyless security and key-based security. We elaborate the evolution of this area from the early theoretic works on the wiretap channel, to its generalizations to more complicated scenarios including multiple-user, multiple-access and multiple-antenna systems, and introduce not only theoretical results but practical implementations. We critically and systematically examine the existing knowledge by analyzing the fundamental mechanics for each approach. Hence we are able to highlight advantages and limitations of proposed techniques, as well their interrelations, and bring insights into future developments of this area
    corecore