306 research outputs found

    Improving Cryptographic Architectures by Adopting Efficient Adders in their Modular Multiplication Hardware VLSI

    Get PDF
    This work studies and compares different modular multiplication algorithms with emphases on the underlying binary adders. The method of interleaving multiplication and reduction, Montgomeryā€™s method, and high-radix method were studied using the carry-save adder, carry-lookahead adder and carry-skip adder. Two recent implementations of the first two methods were modeled and synthesized for practical analysis. A modular multiplier following Kocā€™s implementation [6] based on carry-save adders and the use of carry-skip adders in the final addition step is expected to be of a fast speed with fair area requirement and reduced power consumption

    Improving Cryptographic Architectures by Adopting Efficient Adders in their Modular Multiplication Hardware VLSI

    Get PDF
    This work studies and compares different modular multiplication algorithms with emphases on the underlying binary adders. The method of interleaving multiplication and reduction, Montgomeryā€™s method, and high-radix method were studied using the carry-save adder, carry-lookahead adder and carry-skip adder. Two recent implementations of the first two methods were modeled and synthesized for practical analysis. A modular multiplier following Kocā€™s implementation [6] based on carry-save adders and the use of carry-skip adders in the final addition step is expected to be of a fast speed with fair area requirement and reduced power consumption

    Fast Quantum Modular Exponentiation

    Full text link
    We present a detailed analysis of the impact on modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space tradeoffs. We find that, to exponentiate an n-bit number, for storage space 100n (twenty times the minimum 5n), we can execute modular exponentiation two hundred to seven hundred times faster than optimized versions of the basic algorithms, depending on architecture, for n=128. Addition on a neighbor-only architecture is limited to O(n) time when non-neighbor architectures can reach O(log n), demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices.Comment: to appear in PRA 71(5); RevTeX, 12 pages, 12 figures; v2 revision is substantial, with new algorithmic variants, much shorter and clearer text, and revised equation formattin

    Verification of integer multipliers on the arithmetic bit level

    Get PDF
    One of the most severe short-comings of currently available equivalence checkers is their inability to verify integer multipliers. In this paper, we present a bit level reverse-engineering technique that can be integrated into standard equivalence checking flows. We propose a Boolean mapping algorithm that extracts a network of half adders from the gate netlist of an addition circuit. Once the arithmetic bit level representation of the circuit is obtained, equivalence checking can be performed using simple arithmetic operations. Experimental results show the promise of our approach

    A Synthesizable single-cycle multiply-accumulator

    Get PDF
    The multiplication and multiply-accumulate operations are expensive to implement in hardware for Digital Signal Processing, video, and graphics applications. A standard multiply-accumulator has three inputs and a single output that is equal to the product of two of its inputs added to the third input. For some applications it is desirable for a multiply-accumulator to have two outputs; one output that is the product of the first two inputs, and a second output that is the multiply-accumulate result. The goal of this thesis is to investigate algorithms and architectures used to design multipliers and multiply-accumulators, and to create a multiply-accumulator that computes both outputs in a single clock cycle. Often times in high speed designs the most time-consuming operations are pipelined to meet the system timing requirements. If the multiply-accumulate computation can be reduced to a single-cycle operation the overall processor performance can be improved for many applications. A multiply-accumulator with two outputs can be created using a combination of standard multiply, add, or multiply-accumulate components. Using these components, a multiplier and a multiply-accumulator can be used to produce the outputs in the most time-efficient manner. A multiplier and an adder will result in a smaller design with a larger worst-case delay. Therefore, the goal is to create a multiply-accumulator that is comparable in speed, but requires less area than a design using an industry standard multiplier and multiply-accumulator

    VLSI design of high-speed adders for digital signal processing applications.

    Get PDF
    • ā€¦
    corecore