110 research outputs found

    Trinity: A Unified Treatment of Turbulence, Transport, and Heating in Magnetized Plasmas

    Get PDF
    To faithfully simulate ITER and other modern fusion devices, one must resolve electron and ion fluctuation scales in a five-dimensional phase space and time. Simultaneously, one must account for the interaction of this turbulence with the slow evolution of the large-scale plasma profiles. Because of the enormous range of scales involved and the high dimensionality of the problem, resolved first-principles global simulations are very challenging using conventional (brute force) techniques. In this thesis, the problem of resolving turbulence is addressed by developing velocity space resolution diagnostics and an adaptive collisionality that allow for the confident simulation of velocity space dynamics using the approximate minimal necessary dissipation. With regard to the wide range of scales, a new approach has been developed in which turbulence calculations from multiple gyrokinetic flux tube simulations are coupled together using transport equations to obtain self-consistent, steady-state background profiles and corresponding turbulent fluxes and heating. This approach is embodied in a new code, Trinity, which is capable of evolving equilibrium profiles for multiple species, including electromagnetic effects and realistic magnetic geometry, at a fraction of the cost of conventional global simulations. Furthermore, an advanced model physical collision operator for gyrokinetics has been derived and implemented, allowing for the study of collisional turbulent heating, which has not been extensively studied. To demonstrate the utility of the coupled flux tube approach, preliminary results from Trinity simulations of the core of an ITER plasma are presented.Comment: 187 pages, 53 figures, Ph.D. thesis in physics at University of Maryland, single-space versio

    Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    Full text link
    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., Astrophys. J. Suppl. 182:310 (2009)]. Two main applications of these equations are magnetised (Alfvenic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.Comment: 42 pages, 15 figures, submitted to J. Comp. Phy

    High-order Discretization of a Gyrokinetic Vlasov Model in Edge Plasma Geometry

    Full text link
    We present a high-order spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. Such models describe the phase space advection of plasma species distribution functions in the absence of collisions. The gyrokinetic model is posed in a four-dimensional phase space, upon which a grid is imposed when discretized. To mitigate the computational cost associated with high-dimensional grids, we employ a high-order discretization to reduce the grid size needed to achieve a given level of accuracy relative to lower-order methods. Strong anisotropy induced by the magnetic field motivates the use of mapped coordinate grids aligned with magnetic flux surfaces. The natural partitioning of the edge geometry by the separatrix between the closed and open field line regions leads to the consideration of multiple mapped blocks, in what is known as a mapped multiblock (MMB) approach. We describe the specialization of a more general formalism that we have developed for the construction of high-order, finite-volume discretizations on MMB grids, yielding the accurate evaluation of the gyrokinetic Vlasov operator, the metric factors resulting from the MMB coordinate mappings, and the interaction of blocks at adjacent boundaries. Our conservative formulation of the gyrokinetic Vlasov model incorporates the fact that the phase space velocity has zero divergence, which must be preserved discretely to avoid truncation error accumulation. We describe an approach for the discrete evaluation of the gyrokinetic phase space velocity that preserves the divergence-free property to machine precision

    A Hybrid Gyrokinetic Ion and Isothermal Electron Fluid Code for Astrophysical Plasma

    Full text link
    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) [A. Schekochihin et al., Astrophys. J. Suppl. \textbf{182}, 310 (2009)]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into {\tt AstroGK}, an Eulerian δf\delta f gyrokinetics code specialized to a slab geometry [R. Numata et al., J. Compute. Pays. \textbf{229}, 9347 (2010)]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant--Friedrichs--Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼2mi/me∼100\sim 2\sqrt{m_\mathrm{i}/m_\mathrm{e}} \sim 100 times faster than {\tt AstroGK}\ with a single ion species and kinetic electrons where mi/mem_\mathrm{i}/m_\mathrm{e} is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron--ion temperature ratio and plasma beta

    Mini-Workshop: Innovative Trends in the Numerical Analysis and Simulation of Kinetic Equations

    Get PDF
    In multiscale modeling hierarchy, kinetic theory plays a vital role in connecting microscopic Newtonian mechanics and macroscopic continuum mechanics. As computing power grows, numerical simulation of kinetic equations has become possible and undergone rapid development over the past decade. Yet the unique challenges arising in these equations, such as highdimensionality, multiple scales, random inputs, positivity, entropy dissipation, etc., call for new advances of numerical methods. This mini-workshop brought together both senior and junior researchers working on various fastpaced growing numerical aspects of kinetic equations. The topics include, but were not limited to, uncertainty quantification, structure-preserving methods, phase transitions, asymptotic-preserving schemes, and fast methods for kinetic equations
    • …
    corecore