37,913 research outputs found

    Coupling CAD and CFD codes within a virtual integration platform

    Get PDF
    The Virtual Integration Platform (VIP) is an essential component of the VIRTUE project. It provides a system for combining disparate numerical analysis methods into a simulation environment. The platform allows for defining process chains, allocating of which tools to be used, and assigning users to perform the individual tasks. The platform also manages the data that are imported into or generated within a process, so that a version history of input and output can be evaluated. Within the VIP, a re-usable template for a given process chain can be created. A process chain is composed of one or more smaller tasks. For each of these tasks, a selection of available tools can be allocated. The advanced scripting methods in the VIP use wrappers for managing the individual tools. A wrapper allows communication between the platform and the tool, and passes input and output data as necessary, in most cases without modifying the tool in any way. In this way, third-party tools may also be used without the need for access to source code or special modifications. The included case study demonstrates several advantages of using the integration platform. A parametric propeller design process couples CAD and CFD codes to adapt the propeller to given operating constraints. The VIP template helped eliminate common user errors, and captured enough expert knowledge so that the casual user could perform the given tasks with minimal guidance. Areas of improvements to in-house codes and to the overall process were identified while using the integration platform. Additionally, the process chain was designed to facilitate formal optimisation methods

    An Editorial Workflow Approach For Collaborative Ontology Development

    Get PDF
    The widespread use of ontologies in the last years has raised new challenges for their development and maintenance. Ontology development has transformed from a process normally performed by one ontology engineer into a process performed collaboratively by a team of ontology engineers, who may be geographically distributed and play different roles. For example, editors may propose changes, while authoritative users approve or reject them following a well defined process. This process, however, has only been partially addressed by existing ontology development methods, methodologies, and tool support. Furthermore, in a distributed environment where ontology editors may be working on local copies of the same ontology, strategies should be in place to ensure that changes in one copy are reflected in all of them. In this paper, we propose a workflow-based model for the collaborative development of ontologies in distributed environments and describe the components required to support them. We illustrate our model with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO)

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies
    corecore