346 research outputs found

    A (Simplified) Bluetooth Maximum a Posteriori Probability (Map) Receiver

    Get PDF
    In our software-defined radio project, we aim at combining two standards luetooth and HIPERLAN/2. The HIPERLAN/2 receiver requires more computational power than Bluetooth. We choose to use this computational power also for Bluetooth and look for more advanced demodulation algorithms such as a maximum a posteriori probability (MAP) receiver. The paper discusses a simplified MAP receiver for Bluetooth GFSK signals. Laurent decomposition provides an orthogonal vector space for the MAP receiver. As the first Laurent waveform contains the most energy, we have used only this waveform for our (simplified) MAP receiver. This receiver requires a E/sub b//N/sub 0/ of about 11 dB for a BER of 10/sup -3/, required by the Bluetooth standard. This value is about 6 dB better than single bit demodulators. This performance is only met if the receiver has exact knowledge of the modulation index

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    A combined channel-modified adaptive array MMSE canceller and viterbi equalizer

    Get PDF
    In this thesis, a very simple scheme is proposed which couples a maximum-likelihood sequence estimator (MLSE) with a X-element canceller. The method makes use of the MLSE\u27s channel estimator to modify the locally generated training sequence used to calculate the antenna array weights. This method will increase the array\u27s degree of freedom for interference cancellation by allowing the dispersive, desired signal to pass through the array undisturbed. Temporal equalization of the desired signal is then accomplished using maximum-likelihood sequence estimation. The T-spaced channel estimator coefficients and the array weights are obtained simultaneously using the minimum mean square error criteria. The result is a X-element receiver structure capable of canceling X- 1 in-band interferences without compromising temporal equalization

    Improving QPSK Transmission In Band-Limited Channels With Interchannel Interference Through Equalization

    Get PDF
    This paper describes the use of equalization in conjunction with channel filtering to improve QPSK transmission subject to both InterSymbol interference (ISI) and interchange interference (ICI). Performance bounds are computed using the nonclassical Gauss-quadrature rule (GQR) method. The signal-to-noise ratio (SNR) gain due to linear equalization over Non equalization is thereby obtained and presented. The performance of a linear equalizer thus obtained is compared with the Viterbi algorithm sequence estimator (VASE). In the absence of bounds for the VASE receiver under the channel conditions considered, simulation results are used to make the comparison. With a possible difference in the accuracies of the performance thus obtained it is shown that the VASE provides improved performance over the linear equalizer under the channel conditions considered. Copyright © 1977 by The Institute of Electrical and Electronics Engineers, Inc

    Digital processing of signals in the presence of inter-symbol interference and additive noise

    Get PDF
    Imperial Users onl

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Multi-user receiver structures for direct sequence code division multiple access

    Get PDF
    corecore