32,509 research outputs found

    Cognitive Computation sans Representation

    Get PDF
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is extrinsic to formal procedures as such, and the intended interpretation of syntax makes no difference to the execution of an algorithm. So the unique 'content' postulated by RTM is superfluous to the formal procedures of CTM. And once these procedures are implemented in a physical mechanism, it is exclusively the causal properties of the physical mechanism that are responsible for all aspects of the system's behaviour. So once again, postulated content is rendered superfluous. To the extent that semantic content may appear to play a role in behaviour, it must be syntactically encoded within the system, and just as in a standard computational artefact, so too with the human mind/brain - it's pure syntax all the way down to the level of physical implementation. Hence 'content' is at most a convenient meta-level gloss, projected from the outside by human theorists, which itself can play no role in cognitive processing

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    A Deflationary Account of Mental Representation

    Get PDF
    Among the cognitive capacities of evolved creatures is the capacity to represent. Theories in cognitive neuroscience typically explain our manifest representational capacities by positing internal representations, but there is little agreement about how these representations function, especially with the relatively recent proliferation of connectionist, dynamical, embodied, and enactive approaches to cognition. In this talk I sketch an account of the nature and function of representation in cognitive neuroscience that couples a realist construal of representational vehicles with a pragmatic account of mental content. I call the resulting package a deflationary account of mental representation and I argue that it avoids the problems that afflict competing accounts

    Potentially Polluting Marine Sites GeoDB: An S-100 Geospatial Database as an Effective Contribution to the Protection of the Marine Environment

    Get PDF
    Potentially Polluting Marine Sites (PPMS) are objects on, or areas of, the seabed that may release pollution in the future. A rationale for, and design of, a geospatial database to inventory and manipu-late PPMS is presented. Built as an S-100 Product Specification, it is specified through human-readable UML diagrams and implemented through machine-readable GML files, and includes auxiliary information such as pollution-control resources and potentially vulnerable sites in order to support analyses of the core data. The design and some aspects of implementation are presented, along with metadata requirements and structure, and a perspective on potential uses of the database

    Issues of shaping the students’ professional and terminological competence in science area of expertise in the sustainable development era

    Get PDF
    The paper deals with the problem of future biology teachers’ vocational preparation process and shaping in them of those capacities that contribute to the conservation and enhancement of our planet’s biodiversity as a reflection of the leading sustainable development goals of society. Such personality traits are viewed through the prism of forming the future biology teachers’ professional and terminological competence. The main aspects and categories that characterize the professional and terminological competence of future biology teachers, including terminology, nomenclature, term, nomen and term element, have been explained. The criteria and stages of shaping the future biology teachers’ professional and terminological competence during the vocational training process have been fixed. Methods, techniques, technologies, guiding principles and forms of staged work on the forming of an active terminological dictionary of students have been described and specified. The content of the distant special course “Latin. Botanical Terminology”, which provides training for future teachers to study the professional subjects and to understand of international scientific terminology, has been presented. It is concluded that the proper level of formation of the future biology teachers’ professional and terminological competence will eventually ensure the qualitative preparation of pupils for life in a sustainable development era

    Views from the coalface: chemo-sensors, sensor networks and the semantic sensor web

    Get PDF
    Currently millions of sensors are being deployed in sensor networks across the world. These networks generate vast quantities of heterogeneous data across various levels of spatial and temporal granularity. Sensors range from single-point in situ sensors to remote satellite sensors which can cover the globe. The semantic sensor web in principle should allow for the unification of the web with the real-word. In this position paper, we discuss the major challenges to this unification from the perspective of sensor developers (especially chemo-sensors) and integrating sensors data in real-world deployments. These challenges include: (1) identifying the quality of the data; (2) heterogeneity of data sources and data transport methods; (3) integrating data streams from different sources and modalities (esp. contextual information), and (4) pushing intelligence to the sensor level

    Hydrological Models as Web Services: An Implementation using OGC Standards

    No full text
    <p>Presentation for the HIC 2012 - 10th International Conference on Hydroinformatics. "Understanding Changing Climate and Environment and Finding Solutions" Hamburg, Germany July 14-18, 2012</p> <p> </p

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations
    • 

    corecore