107,651 research outputs found

    A Framework for Rapid Development and Portable Execution of Packet-Handling Applications

    Get PDF
    This paper presents a framework that enables the execution of packet-handling applications (such as sniffers, firewalls, intrusion detectors, etc.) on different hardware platforms. This framework is centered on the NetVM - a novel, portable, and efficient virtual processor targeted for packet-based processing - and the NetPDL - a language dissociating applications from protocol specifications. In addition, a high-level programming language that enables rapid development of packet-based applications is presented

    Everest: Towards a Verified, Drop-in Replacement of HTTPS

    Get PDF
    The HTTPS ecosystem is the foundation on which Internet security is built. At the heart of this ecosystem is the Transport Layer Security (TLS) protocol, which in turn uses the X.509 public-key infrastructure and numerous cryptographic constructions and algorithms. Unfortunately, this ecosystem is extremely brittle, with headline-grabbing attacks and emergency patches many times a year. We describe our ongoing efforts in Everest (The Everest VERified End-to-end Secure Transport) a project that aims to build and deploy a verified version of TLS and other components of HTTPS, replacing the current infrastructure with proven, secure software. Aiming both at full verification and usability, we conduct high-level code-based, game-playing proofs of security on cryptographic implementations that yield efficient, deployable code, at the level of C and assembly. Concretely, we use F*, a dependently typed language for programming, meta-programming, and proving at a high level, while relying on low-level DSLs embedded within F* for programming low-level components when necessary for performance and, sometimes, side-channel resistance. To compose the pieces, we compile all our code to source-like C and assembly, suitable for deployment and integration with existing code bases, as well as audit by independent security experts. Our main results so far include (1) the design of Low*, a subset of F* designed for C-like imperative programming but with high-level verification support, and KreMLin, a compiler that extracts Low* programs to C; (2) an implementation of the TLS-1.3 record layer in Low*, together with a proof of its concrete cryptographic security; (3) Vale, a new DSL for verified assembly language, and several optimized cryptographic primitives proven functionally correct and side-channel resistant. In an early deployment, all our verified software is integrated and deployed within libcurl, a widely used library of networking protocols

    Filtering Network Traffic Based on Protocol Encapsulation Rules

    Get PDF
    Packet filtering is a technology at the foundation of many traffic analysis tasks. While languages and tools for packet filtering have been available for many years, none of them supports filters operating on the encapsulation relationships found in each packet. This represents a problem as the number of possible encapsulations used to transport traffic is steadily increasing and we cannot define exactly which packets have to be captured. This paper presents our early work on an algorithm that models protocol filtering patterns (including encapsulation constraints) as Finite State Automata and supports the composition of multiple expressions within the same filter. The resulting, optimized filter is then translated into executable code. The above filtering algorithms are available in the NetBee open source library, which provides some basic tools for handling network packets (e.g., a tcpdump-like program) and APIs to build more advanced tool
    • 

    corecore