1,126 research outputs found

    Implementation of a PSO Based Online Design of an Optimal Excitation Controller

    Get PDF
    The Navypsilas future electric ships will contain a number of pulsed power loads for high-energy applications such as radar, railguns, and advanced weapons. This pulse energy demand has to be provided by the ship energy sources, while not impacting the operation of the rest of the system. It is clear from studies carried out earlier that disturbances are created at the generator ac bus. This paper describes an online design and laboratory hardware implementation of an optimal excitation controller using particle swarm optimization (PSO) to minimize the effects of pulsed loads. The PSO algorithm has been implemented on a digital signal processor. Laboratory results show that the PSO designed excitation controller provides an effective control of a generatorpsilas terminal voltage during pulsed loads, restoring and stabilizing it quickly

    Hardware Implementation of an AIS-Based Optimal Excitation Controller for an Electric Ship

    Get PDF
    The operation of high energy loads on Navy\u27s future electric ships, such as directed energy weapons, will cause disturbances in the main bus voltage and impact the operation of the rest of the power system when the pulsed loads are directly powered from the main dc bus. This paper describes an online design and laboratory hardware implementation of an optimal excitation controller using an artificial immune system (AIS) based algorithm. The AIS algorithm, a clonal selection algorithm (CSA), is used to minimize the effects of pulsed loads by improved excitation control and thus, reduce the requirement on energy storage device capacity. The CSA is implemented on the MSK2812 DSP hardware platform. A comparison of CSA and the particle swarm optimization (PSO) algorithm is presented. Hardware measurement results show that the CSA optimized excitation controller provides effective control of a generator\u27s terminal voltage during pulsed loads, restoring and stabilizing it quickly

    Optimal excitation controllers, and location and sizing of energy storage for all-electric ship power system

    Get PDF
    The Navy\u27s future all-electric ship power system is based on the integrated power system (IPS) architecture consisting of power generation, propulsion systems, hydrodynamics, and DC zonal electric distribution system (DC-ZEDS). To improve the power quality, optimal excitation systems, and optimal location and sizing of energy storage modules (ESMs) are studied. In this dissertation, clonal selection algorithm (CSA) based controller design is firstly introduced. CSA based controller design shows better exploitation ability with relatively long search time when compared to a particle swarm optimization (PSO) based design. Furthermore, \u27optimal\u27 small population PSO (SPPSO) based excitation controller is introduced. Parameter sensitivity analysis shows that the parameters of SPPSO for regeneration can be fined tuned to achieve fast optimal controller design, and thus exploiting SPPSO features for problem of particles get trapped in local minima and long search time. Furthermore, artificial immune system based concepts are used to develop adaptive and coordinated excitation controllers for generators on ship IPS. The computational approaches for excitation controller designs have been implemented on digital signal processors interfaced to an actual laboratory synchronous machine, and to multimachine electric ship power systems simulated on a real-time digital simulator. Finally, an approach to evaluate ESM location and sizing is proposed using three metrics: quality of service, survivability and cost. Multiple objective particle swarm optimization (MOPSO) is used to optimize these metrics and provide Pareto fronts for optimal ESM location and sizing --Abstract, page iv

    Synthesis of Minimal Error Control Software

    Full text link
    Software implementations of controllers for physical systems are at the core of many embedded systems. The design of controllers uses the theory of dynamical systems to construct a mathematical control law that ensures that the controlled system has certain properties, such as asymptotic convergence to an equilibrium point, while optimizing some performance criteria. However, owing to quantization errors arising from the use of fixed-point arithmetic, the implementation of this control law can only guarantee practical stability: under the actions of the implementation, the trajectories of the controlled system converge to a bounded set around the equilibrium point, and the size of the bounded set is proportional to the error in the implementation. The problem of verifying whether a controller implementation achieves practical stability for a given bounded set has been studied before. In this paper, we change the emphasis from verification to automatic synthesis. Using synthesis, the need for formal verification can be considerably reduced thereby reducing the design time as well as design cost of embedded control software. We give a methodology and a tool to synthesize embedded control software that is Pareto optimal w.r.t. both performance criteria and practical stability regions. Our technique is a combination of static analysis to estimate quantization errors for specific controller implementations and stochastic local search over the space of possible controllers using particle swarm optimization. The effectiveness of our technique is illustrated using examples of various standard control systems: in most examples, we achieve controllers with close LQR-LQG performance but with implementation errors, hence regions of practical stability, several times as small.Comment: 18 pages, 2 figure

    Centralized wide area damping controller for power system oscillation problems

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, three different centralized control designs that vary on complexity are presented to damp inter-area oscillations in large power systems. All the controls are based on phasor measurements. The first two proposed architectures use simple proportional gains that consider availability of measurements from different areas of the system and fulfill different optimization functions. The third controller is based on a more sophisticated Linear Quadratic Gaussian approach which requires access to the state space model of the system under investigation. The novelty of the proposed scheme resides in designing a single control to command the most influence group of machines in the system. To illustrate the effectiveness of the proposed algorithms, simulations results in the IEEE New England model are presented

    A Novel Approach to PID Controller Design for Improvement of Transient Stability and Voltage Regulation of Nonlinear Power System

    Get PDF
    In this paper, a novel design method for determining the optimal PID controller parameters for non-linear power system using the particle swarm optimization (PSO) algorithm is presented. The direct feedback linearization (DFL) technique is used to linearize the nonlinear system for computing the PID (DFL-PID) controller parameters. By taking an example of single machine infinite bus (SMIB) power system it has been shown that PSO based PID controller stabilizes the system and restores the pre-fault system performance after fault is cleared and line is restored. The performance of this controlled system is compared with the performance of DFL-state feedback controlled power system. It has been shown that the performance of DFL-PID controlled system is superior compared to DFL-state feedback controlled system. For simulation MATLAB 7 software is used.

    Particle Swarm Optimization Tuned Flatness-Based Generator Excitation Controller

    Get PDF
    An optimal transient controller for a synchronous generator in a multi-machine power system is designed using the concept of flatness-based feedback linearization in this paper. The computation of the flat output and corresponding controller for reduced order model of the synchronous generator is presented. The required feedback gains used to close the linearization loop is optimized using particle swarm optimization for maximum damping. Typical results obtained for transient disturbances on a two-area, four-generator power system equipped with the proposed controller on one generator and conventional power system stabilizers on the remaining generators are presented. The effectiveness of the flatness-based controller for multi-machine power systems is discussed

    Clustering methods for the efficient voltage regulation in smart grids

    Get PDF
    In this paper, clustering methods are presented to enhance the stability of automatic voltage regulators using the efficient adjustment of their respective gains. The results show that implementations of some of the clustering algorithms provide better reliability and stability for the feedback-based voltage regulators as compared to the other methods, namely, a model predictive controller (MPC), a gaussian mixture model (GMM), a self-organizing mapping (SOM) and hierarchical clustering (HC) methods. Specifically, the K-Means clustering approach (KM) provided superior stability but a slower rise time of the output voltage of the voltage regulators as compared to the other methods. Furthermore, coordination of the clustering methods is tested for a 10 machine, 39 bus power grid system. The results show that the clustering approach could be applied to improve the efficiency of voltage regulation methods in smart grids and related cyber-physical systems
    • …
    corecore