181 research outputs found

    An Architecture for QoS-capable Integrated Security Gateway to Protect Avionic Data Network

    Get PDF
    International audienceWhile the use of Internet Protocol (IP) in aviation allows new applications and benefits, it opens the doors for security risks and attacks. Many security mechanisms and solutions have evolved to mitigate the ever continuously increasing number of network attacks. Although these conventional solutions have solved some security problems, they also leave some security holes. Securing open and complex systems have become more and more complicated and obviously, the dependence on a single security mechanism gives a false sense of security while opening the doors for attackers. Hence, to ensure secure networks, several security mechanisms must work together in a harmonic multi-layered way. In addition, if we take QoS requirements into account, the problem becomes more complicated and necessitates in-depth reflexions. In this paper, we present the architecture of our QoS-capable integrated security gateway: a gateway that highly integrates well chosen technologies in the area of network security as well as QoS mechanisms to provide the strongest level of security for avionic data network; our main aim is to provide both multi-layered security and stable performances for critical network applications

    Analyse de sécurité et QoS dans les réseaux à contraintes temporelles

    Get PDF
    Dans le domaine des réseaux, deux précieux objectifs doivent être atteints, à savoir la QoS et la sécurité, plus particulièrement lorsqu’il s’agit des réseaux à caractère critique et à fortes contraintes temporelles. Malheureusement, un conflit existe : tandis que la QoS œuvre à réduire les temps de traitement, les mécanismes de sécurité quant à eux requièrent d’importants temps de traitement et causent, par conséquent, des délais et dégradent la QoS. Par ailleurs, les systèmes temps réel, la QoS et la sécurité ont très souvent été étudiés séparément, par des communautés différentes. Dans le contexte des réseaux avioniques de données, de nombreux domaines et applications, de criticités différentes, échangent mutuellement des informations, souvent à travers des passerelles. Il apparaît clairement que ces informations présentent différents niveaux de sensibilité en termes de sécurité et de QoS. Tenant compte de cela, le but de cette thèse est d’accroître la robustesse des futures générations de réseaux avioniques de données en contrant les menaces de sécurité et évitant les ruptures de trafic de données. A cet effet, nous avons réalisé un état de l’art des mécanismes de sécurité, de la QoS et des applications à contraintes temporelles. Nous avons, ensuite étudié la nouvelle génération des réseaux avioniques de données. Chose qui nous a permis de déterminer correctement les différentes menaces de sécurité. Sur la base de cette étude, nous avons identifié à la fois les exigences de sécurité et de QoS de cette nouvelle génération de réseaux avioniques. Afin de les satisfaire, nous avons proposé une architecture de passerelle de sécurité tenant compte de la QoS pour protéger ces réseaux avioniques et assurer une haute disponibilité en faveur des données critiques. Pour assurer l’intégration des différentes composantes de la passerelle, nous avons développé une table de session intégrée permettant de stocker toutes les informations nécessaires relatives aux sessions et d’accélérer les traitements appliqués aux paquets (filtrage à états, les traductions d’adresses NAT, la classification QoS et le routage). Cela a donc nécessité, en premier lieu, l'étude de la structure existante de la table de session puis, en second lieu, la proposition d'une toute nouvelle structure répondant à nos objectifs. Aussi, avons-nous présenté un algorithme permettant l’accès et l’exploitation de la nouvelle table de session intégrée. En ce qui concerne le composant VPN IPSec, nous avons détecté que le trafic chiffré par le protocole ESP d’IPSec ne peut pas être classé correctement par les routeurs de bordure. Afin de surmonter ce problème, nous avons développé un protocole, Q-ESP, permettant la classification des trafics chiffrés et offrant les services de sécurité fournis par les protocoles AH et ESP combinés. Plusieurs techniques de gestion de bande passante ont été développées en vue d’optimiser la gestion du trafic réseau. Pour évaluer les performances offertes par ces techniques et identifier laquelle serait la plus appropriée dans notre cas, nous avons effectué une comparaison basée sur le critère du délai, par le biais de tests expérimentaux. En dernière étape, nous avons évalué et comparé les performances de la passerelle de sécurité que nous proposons par rapport à trois produits commerciaux offrant les fonctions de passerelle de sécurité logicielle en vue de déterminer les points forts et faibles de notre implémentation pour la développer ultérieurement. Le manuscrit s’organise en deux parties : la première est rédigée en français et représente un résumé détaillé de la deuxième partie qui est, quant à elle, rédigée en anglais. ABSTRACT : QoS and security are two precious objectives for network systems to attain, especially for critical networks with temporal constraints. Unfortunately, they often conflict; while QoS tries to minimize the processing delay, strong security protection requires more processing time and causes traffic delay and QoS degradation. Moreover, real-time systems, QoS and security have often been studied separately and by different communities. In the context of the avionic data network various domains and heterogeneous applications with different levels of criticality cooperate for the mutual exchange of information, often through gateways. It is clear that this information has different levels of sensitivity in terms of security and QoS constraints. Given this context, the major goal of this thesis is then to increase the robustness of the next generation e-enabled avionic data network with respect to security threats and ruptures in traffic characteristics. From this perspective, we surveyed the literature to establish state of the art network security, QoS and applications with time constraints. Then, we studied the next generation e-enabled avionic data network. This allowed us to draw a map of the field, and to understand security threats. Based on this study we identified both security and QoS requirements of the next generation e-enabled avionic data network. In order to satisfy these requirements we proposed the architecture of QoS capable integrated security gateway to protect the next generation e-enabled avionic data network and ensure the availability of critical traffic. To provide for a true integration between the different gateway components we built an integrated session table to store all the needed session information and to speed up the packet processing (firewall stateful inspection, NAT mapping, QoS classification and routing). This necessitates the study of the existing session table structure and the proposition of a new structure to fulfill our objective. Also, we present the necessary processing algorithms to access the new integrated session table. In IPSec VPN component we identified the problem that IPSec ESP encrypted traffic cannot be classified appropriately by QoS edge routers. To overcome this problem, we developed a Q-ESP protocol which allows the classifications of encrypted traffic and combines the security services provided by IPSec ESP and AH. To manage the network traffic wisely, a variety of bandwidth management techniques have been developed. To assess their performance and identify which bandwidth management technique is the most suitable given our context we performed a delay-based comparison using experimental tests. In the final stage, we benchmarked our implemented security gateway against three commercially available software gateways. The goal of this benchmark test is to evaluate performance and identify problems for future research work. This dissertation is divided into two parts: in French and in English respectively. Both parts follow the same structure where the first is an extended summary of the second

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Design and Evaluation of Distributed Algorithms for Placement of Network Services

    Get PDF
    Network services play an important role in the Internet today. They serve as data caches for websites, servers for multiplayer games and relay nodes for Voice over IP: VoIP) conversations. While much research has focused on the design of such services, little attention has been focused on their actual placement. This placement can impact the quality of the service, especially if low latency is a requirement. These services can be located on nodes in the network itself, making these nodes supernodes. Typically supernodes are selected in either a proprietary or ad hoc fashion, where a study of this placement is either unavailable or unnecessary. Previous research dealt with the only pieces of the problem, such as finding the location of caches for a static topology, or selecting better routes for relays in VoIP. However, a comprehensive solution is needed for dynamic applications such as multiplayer games or P2P VoIP services. These applications adapt quickly and need solutions based on the immediate demands of the network. In this thesis we develop distributed algorithms to assign nodes the role of a supernode. This research first builds off of prior work by modifying an existing assignment algorithm and implementing it in a distributed system called Supernode Placement in Overlay Topologies: SPOT). New algorithms are developed to assign nodes the supernode role. These algorithms are then evaluated in SPOT to demonstrate improved SN assignment and scalability. Through a series of simulation, emulation, and experimentation insight is gained into the critical issues associated with allocating resources to perform the role of supernodes. Our contributions include distributed algorithms to assign nodes as supernodes, an open source fully functional distributed supernode allocation system, an evaluation of the system in diverse networking environments, and a simulator called SPOTsim which demonstrates the scalability of the system to thousands of nodes. An example of an application deploying such a system is also presented along with the empirical results

    Delay Performance and Cybersecurity of Smart Grid Infrastructure

    Get PDF
    To address major challenges to conventional electric grids (e.g., generation diversification and optimal deployment of expensive assets), full visibility and pervasive control over utilities\u27 assets and services are being realized through the integratio

    System level airborne avionics prognostics for maintenance, repair and overhaul

    Get PDF
    The aim of this study is to propose an alternative approach in prognostics for airborne avionics system in order to enhance maintenance process and aircraft availability. The objectives are to analyse the dependency of avionic systems for fault propagation behaviour degradation, research and develop methods to predict the remaining useful life of avionics Line Replaceable Units (LRU), research and develop methods to evaluate and predict the degradation performances of avionic systems, and lastly to develop software simulation systems to evaluate methods developed. One of the many stakeholders in the aircraft lifecycle includes the Maintenance, Repair and Overhaul (MRO) industry. The predictable logistics process to some degree as an outcome of IVHM gives benefit to the MRO industry. In this thesis, a new integrated numerical methodology called ‘System Level Airborne Avionic Prognostics’ or SLAAP is developed; looking at a top level solution in prognostics. Overall, this research consists of two main elements. One is to thoroughly understand and analyse data that could be utilised. Secondly, is to apply the developed methodology using the enhanced prognostic methodology. Readily available fault tree data is used to analyse the dependencies of each component within the LRUs, and performance were simulated using the linear Markov Model to estimate the time to failure. A hybrid approach prognostics model is then integrated with the prognostics measures that include environmental factors that contribute to the failure of a system, such as temperature. This research attempts to use data that is closest to the data available in the maintenance repair and overhaul industry. Based on a case study on Enhanced Ground Proximity Warning System (EGPWS), the prognostics methodology developed showed a sufficiently close approximation to the Mean Time Before Failure (MTBF) data supplied by the Original Equipment Manufacturer (OEM). This validation gives confidence that the proposed methodology will achieve its objectives and it should be further developed for use in the systems design process

    System level airborne avionics prognostics for maintenance, repair and overhaul

    Get PDF
    The aim of this study is to propose an alternative approach in prognostics for airborne avionics system in order to enhance maintenance process and aircraft availability. The objectives are to analyse the dependency of avionic systems for fault propagation behaviour degradation, research and develop methods to predict the remaining useful life of avionics Line Replaceable Units (LRU), research and develop methods to evaluate and predict the degradation performances of avionic systems, and lastly to develop software simulation systems to evaluate methods developed. One of the many stakeholders in the aircraft lifecycle includes the Maintenance, Repair and Overhaul (MRO) industry. The predictable logistics process to some degree as an outcome of IVHM gives benefit to the MRO industry. In this thesis, a new integrated numerical methodology called ‘System Level Airborne Avionic Prognostics’ or SLAAP is developed; looking at a top level solution in prognostics. Overall, this research consists of two main elements. One is to thoroughly understand and analyse data that could be utilised. Secondly, is to apply the developed methodology using the enhanced prognostic methodology. Readily available fault tree data is used to analyse the dependencies of each component within the LRUs, and performance were simulated using the linear Markov Model to estimate the time to failure. A hybrid approach prognostics model is then integrated with the prognostics measures that include environmental factors that contribute to the failure of a system, such as temperature. This research attempts to use data that is closest to the data available in the maintenance repair and overhaul industry. Based on a case study on Enhanced Ground Proximity Warning System (EGPWS), the prognostics methodology developed showed a sufficiently close approximation to the Mean Time Before Failure (MTBF) data supplied by the Original Equipment Manufacturer (OEM). This validation gives confidence that the proposed methodology will achieve its objectives and it should be further developed for use in the systems design process

    Advanced flight deck/crew station simulator functional requirements

    Get PDF
    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented

    Definition of avionics concepts for a heavy lift cargo vehicle, volume 2

    Get PDF
    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate
    • …
    corecore