4,978 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin

    Get PDF
    Groundwater depletion has been one of the major challenges in recent years. Analysis of groundwater levels can be beneficial for groundwater management. The National Aeronautics and Space Administration’s twin satellite, Gravity Recovery and Climate Experiment (GRACE), serves in monitoring terrestrial water storage. Increasing freshwater demand amidst recent drought (2000–2014) posed a significant groundwater level decline within the Colorado River Basin (CRB). In the current study, a non-parametric technique was utilized to analyze historical groundwater variability. Additionally, a stochastic Autoregressive Integrated Moving Average (ARIMA) model was developed and tested to forecast the GRACE-derived groundwater anomalies within the CRB. The ARIMA model was trained with the GRACE data from January 2003 to December of 2013 and validated with GRACE data from January 2014 to December of 2016. Groundwater anomaly from January 2017 to December of 2019 was forecasted with the tested model. Autocorrelation and partial autocorrelation plots were drawn to identify and construct the seasonal ARIMA models. ARIMA order for each grid was evaluated based on Akaike’s and Bayesian information criterion. The error analysis showed the reasonable numerical accuracy of selected seasonal ARIMA models. The proposed models can be used to forecast groundwater variability for sustainable groundwater planning and management

    Deep Learning Techniques in Extreme Weather Events: A Review

    Full text link
    Extreme weather events pose significant challenges, thereby demanding techniques for accurate analysis and precise forecasting to mitigate its impact. In recent years, deep learning techniques have emerged as a promising approach for weather forecasting and understanding the dynamics of extreme weather events. This review aims to provide a comprehensive overview of the state-of-the-art deep learning in the field. We explore the utilization of deep learning architectures, across various aspects of weather prediction such as thunderstorm, lightning, precipitation, drought, heatwave, cold waves and tropical cyclones. We highlight the potential of deep learning, such as its ability to capture complex patterns and non-linear relationships. Additionally, we discuss the limitations of current approaches and highlight future directions for advancements in the field of meteorology. The insights gained from this systematic review are crucial for the scientific community to make informed decisions and mitigate the impacts of extreme weather events

    A technique for determining viable military logistics support alternatives

    Get PDF
    A look at today's US military will see them operating much beyond the scope of protecting and defending the United States. These operations now consist of, but are not limited to humanitarian aid, disaster relief, and conflict resolution. This broad spectrum of operational environments has necessitated a transformation of the individual military services into a hybrid force that can leverage the inherent and emerging capabilities from the strengths of those under the umbrella of the Department of Defense (DOD), this concept has been coined Joint Operations. Supporting Joint Operations requires a new approach to determining a viable military logistics support system. The logistics architecture for these operations has to accommodate scale, time, varied mission objectives, and imperfect information. Compounding the problem is the human in the loop (HITL) decision maker (DM) who is a necessary component for quickly assessing and planning logistics support activities. Past outcomes are not necessarily good indicators of future results, but they can provide a reasonable starting point for planning and prediction of specific needs for future requirements. Adequately forecasting the necessary logistical support structure and commodities needed for any resource intensive environment has progressed well beyond stable demand assumptions to one in which dynamic and nonlinear environments can be captured with some degree of fidelity and accuracy. While these advances are important, a holistic approach that allows exploration of the operational environment or design space does not exist to guide the military logistician in a methodical way to support military forecasting activities. To bridge this capability gap, a method called A Technique for Logistics Architecture Selection (ATLAS) has been developed. This thesis describes and applies the ATLAS method to a notional military scenario that involves the Navy concept of Seabasing and the Marine Corps concept of Distributed Operations applied to a platoon sized element. This work uses modeling and simulation to incorporate expert opinion and knowledge of military operations, dynamic reasoning methods, and certainty analysis to create a decisions support system (DSS) that can be used to provide the DM an enhanced view of the logistics environment and variables that impact specific measures of effectiveness.Ph.D.Committee Chair: Mavris, Dimitri; Committee Member: Fahringer, Philip; Committee Member: Nixon, Janel; Committee Member: Schrage, Daniel; Committee Member: Soban, Danielle; Committee Member: Vachtsevanos, Georg

    Analysis of Power Quality Constrained Consumer-Friendly Demand Response in Low Voltage Distributions Network

    Get PDF
    Load management using demand response (DR) in a low voltage distribution network (LVDN) offers an economically profitable business platform with peak load management. However, the inconvenience caused to the consumer in depriving their devices and the low levels of associated incentive have contributed to lower consumer acceptance for DR programs in the community. However, with the increasing number of controllable consumer loads, a residential-level DR program is highly plausible in the short to medium term. Further, additional DR capabilities (including ancillary services) are likely to improve the remuneration potential for participants in DR. Considering the perspective of a distribution network operator (DNO), any service useful for maintaining the stable and secure operation of an LVDN will always be appreciated. Thus, in addition to DR\u27s peak load management potential, any further contribution in maintaining power quality (PQ) in the network considered as an ancillary service to DNO will create a profitable business opportunity. Firstly, primary PQ management tasks in an LVDN are maintaining voltage profile and reducing harmonics. With the advancement in the consumer electronics market, increased penetration of nonlinear low carbon technologies (LCTs) based loads at the consumer-side, will increases the harmonic content in the LVDN. While consumer devices may have non-threatening levels of harmonic components, they can still cause issues by accumulating at the main feeder when the additive nature of harmonics are considered. Further, and in respect to harmonics, total harmonic distortion (THD), as a universal indicator, may not be a deterministic measure of the impact of harmonics due to THD’s dependency on the magnitude of fundamental current. Moving to the voltage issue, in an electrical network, it is required to maintain the voltage level of all nodes in the network between regulated tolerance levels. However, during peak load hours, the voltage at the end of a radial feeder may drop below the tolerance level. The corollary is also an issue. A light loading scenario on the same feeder with a higher penetration of solar photovoltaic distributed generators (SPVDG) injecting active power can create a voltage rise scenario. While consumer loads/loading are responsible for these PQ issues in the network, there is no direct obligation on residential level consumers to manage them as long as they are individually operating within the regulation limits. However, a DR option can utilize PQ’s dependency on loads to provide additional service to DNO to mitigate any PQ violations. The DR program\u27s success is critically dependent on consumer participation. It also becomes essential to operate the program with a minimum level of consumer inconvenience. Therefore, a proposal for micromanaging consumer load on an LVDN while considering consumer inconvenience and attaining PQ objectives is thus the theme of this thesis. This research proposes a PQ constrained consumer-friendly DR (PQ-C-DR) program that can provide additional ancillary PQ management services along with conventional DR capabilities. Due consideration is given to minimize consumer inconvenience while operating DR to ensure social acceptability and equity. Harmonic levels in the network are essentially integrated as harmonic heating constraints to maintain stable levels of harmonics in LVDN. A DR in conjunction with a co-ordinated incremental and ‘fair’ curtailment algorithm is introduced to manage the voltage levels in the radial LVDN. A sensitivity study of the proposed algorithm is performed on an urban distribution network model under different operating scenarios. This thesis introduces a new algorithmic dimension in applications for load management to ancillary services (PQ management) using DR. The PQ-C-DR will favour consumer comfort while profiting all stakeholders involved, which essentially creates a win-win scenario for all network participants – essential in DNO/consumer negotiations to achieve wider DR engagement. Improving the profitability of DR by providing additional service(s) is beneficial to both customers and retailers. Furthermore, the DNO benefits from delaying additional peak and PQ management related investments, which could essentially improve the utilization factor of the network

    Condition Assessment of Concrete Bridge Decks Using Ground and Airborne Infrared Thermography

    Get PDF
    Applications of nondestructive testing (NDT) technologies have shown promise in assessing the condition of existing concrete bridges. Infrared thermography (IRT) has gradually gained wider acceptance as a NDT and evaluation tool in the civil engineering field. The high capability of IRT in detecting subsurface delamination, commercial availability of infrared cameras, lower cost compared with other technologies, speed of data collection, and remote sensing are some of the expected benefits of applying this technique in bridge deck inspection practices. The research conducted in this thesis aims at developing a rational condition assessment system for concrete bridge decks based on IRT technology, and automating its analysis process in order to add this invaluable technique to the bridge inspector’s tool box. Ground penetrating radar (GPR) has also been vastly recognized as a NDT technique capable of evaluating the potential of active corrosion. Therefore, integrating IRT and GPR results in this research provides more precise assessments of bridge deck conditions. In addition, the research aims to establish a unique link between NDT technologies and inspector findings by developing a novel bridge deck condition rating index (BDCI). The proposed procedure captures the integrated results of IRT and GPR techniques, along with visual inspection judgements, thus overcoming the inherent scientific uncertainties of this process. Finally, the research aims to explore the potential application of unmanned aerial vehicle (UAV) infrared thermography for detecting hidden defects in concrete bridge decks. The NDT work in this thesis was conducted on full-scale deteriorated reinforced concrete bridge decks located in Montreal, Quebec and London, Ontario. The proposed models have been validated through various case studies. IRT, either from the ground or by utilizing a UAV with high-resolution thermal infrared imagery, was found to be an appropriate technology for inspecting and precisely detecting subsurface anomalies in concrete bridge decks. The proposed analysis produced thermal mosaic maps from the individual IR images. The k-means clustering classification technique was utilized to segment the mosaics and identify objective thresholds and, hence, to delineate different categories of delamination severity in the entire bridge decks. The proposed integration methodology of NDT technologies and visual inspection results provided more reliable BDCI. The information that was sought to identify the parameters affecting the integration process was gathered from bridge engineers with extensive experience and intuition. The analysis process utilized the fuzzy set theory to account for uncertainties and imprecision in the measurements of bridge deck defects detected by IRT and GPR testing along with bridge inspector observations. The developed system and models should stimulate wider acceptance of IRT as a rapid, systematic and cost-effective evaluation technique for detecting bridge deck delaminations. The proposed combination of IRT and GPR results should expand their correlative use in bridge deck inspection. Integrating the proposed BDCI procedure with existing bridge management systems can provide a detailed and timely picture of bridge health, thus helping transportation agencies in identifying critical deficiencies at various service life stages. Consequently, this can yield sizeable reductions in bridge inspection costs, effective allocation of limited maintenance and repair funds, and promote the safety, mobility, longevity, and reliability of our highway transportation assets

    Deep learning approach to forecasting hourly solar irradiance

    Get PDF
    Abstract: In this dissertation, six artificial intelligence (AI) based methods for forecasting solar irradiance are presented. Solar energy is a clean renewable energy source (RES) which is free and abundant in nature. But despite the environmental impacts of fossil energy, global dependence on it is yet to drop appreciably in favor of solar energy for power generation purposes. Although the latest improvements on the technologies of photovoltaic (PV) cells have led to a significant drop in the cost of solar panels, solar power is still unattractive to some consumers due to its unpredictability. Consequently, accurate prediction of solar irradiance for stable solar power production continues to be a critical need both in the field of physical simulations or artificial intelligence. The performance of various methods in use for prediction of solar irradiance depends on the diversity of dataset, time step, experimental setup, performance evaluators, and forecasting horizon. In this study, historical meteorological data for the city of Johannesburg were used as training data for the solar irradiance forecast. Data collected for this work spanned from 1984 to 2019. Only ten years (2009 to 2018) of data was used. Tools used are Jupyter notebook and Computer with Nvidia GPU...M.Ing. (Electrical and Electronic Engineering Management

    A Deep Learning-Based Automatic Object Detection Method for Autonomous Driving Ships

    Get PDF
    An important feature of an Autonomous Surface Vehicles (ASV) is its capability of automatic object detection to avoid collisions, obstacles and navigate on their own. Deep learning has made some significant headway in solving fundamental challenges associated with object detection and computer vision. With tremendous demand and advancement in the technologies associated with ASVs, a growing interest in applying deep learning techniques in handling challenges pertaining to autonomous ship driving has substantially increased over the years. In this thesis, we study, design, and implement an object recognition framework that detects and recognizes objects found in the sea. We first curated a Sea-object Image Dataset (SID) specifically for this project. Then, by utilizing a pre-trained RetinaNet model on a large-scale object detection dataset named Microsoft COCO, we further fine-tune it on our SID dataset. We focused on sea objects that may potentially cause collisions or other types of maritime accidents. Our final model can effectively detect various types of floating or surrounding objects and classify them into one of the ten predefined significant classes, which are buoy, ship, island, pier, person, waves, rocks, buildings, lighthouse, and fish. Experimental results have demonstrated its good performance
    • …
    corecore