7,053 research outputs found

    Secure Data Provenance in Home Energy Monitoring Networks

    Get PDF
    Smart grid empowers home owners to efficiently manage their smart home appliances within a Home Area Network (HAN), by real time monitoring and fine-grained control. However, it offers the possibility for a malicious user to intrude into the HAN and deceive the smart metering system with fraudulent energy usage report. While most of the existing works have focused on how to prevent data tampering in HAN's communication channel, this paper looks into a relatively less studied security aspect namely data provenance. We propose a novel solution based on Shamir's secret sharing and threshold cryptography to guarantee that the reported energy usage is collected from the specific appliance as claimed at a particular location, and that it reflects the real consumption of the energy. A byproduct of the proposed security solution is a guarantee of data integrity. A prototype implementation is presented to demonstrate the feasibility and practicality of the proposed solution

    Distributed Key Management for Secure Role Based Messaging

    Get PDF
    Secure Role Based Messaging (SRBM) augments messaging systems with role oriented communication in a secure manner. Role occupants can sign and decrypt messages on behalf of roles. This paper identifies the requirements of SRBM and recognises the need for: distributed key shares, fast membership revocation, mandatory security controls and detection of identity spoofing. A shared RSA scheme is constructed. RSA keys are shared and distributed to role occupants and role gate keepers. Role occupants and role gate keepers must cooperate together to use the key shares to sign and decrypt the messages. Role occupant signatures can be verified by an audit service. A SRBM system architecture is developed to show the security related performance of the proposed scheme, which also demonstrates the implementation of fast membership revocation, mandatory security control and prevention of spoofing. It is shown that the proposed scheme has successfully coupled distributed security with mandatory security controls to realize secure role based messaging

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder
    corecore