163 research outputs found

    Design and Implementation of MPICH2 over InfiniBand with RDMA Support

    Full text link
    For several years, MPI has been the de facto standard for writing parallel applications. One of the most popular MPI implementations is MPICH. Its successor, MPICH2, features a completely new design that provides more performance and flexibility. To ensure portability, it has a hierarchical structure based on which porting can be done at different levels. In this paper, we present our experiences designing and implementing MPICH2 over InfiniBand. Because of its high performance and open standard, InfiniBand is gaining popularity in the area of high-performance computing. Our study focuses on optimizing the performance of MPI-1 functions in MPICH2. One of our objectives is to exploit Remote Direct Memory Access (RDMA) in Infiniband to achieve high performance. We have based our design on the RDMA Channel interface provided by MPICH2, which encapsulates architecture-dependent communication functionalities into a very small set of functions. Starting with a basic design, we apply different optimizations and also propose a zero-copy-based design. We characterize the impact of our optimizations and designs using microbenchmarks. We have also performed an application-level evaluation using the NAS Parallel Benchmarks. Our optimized MPICH2 implementation achieves 7.6 μ\mus latency and 857 MB/s bandwidth, which are close to the raw performance of the underlying InfiniBand layer. Our study shows that the RDMA Channel interface in MPICH2 provides a simple, yet powerful, abstraction that enables implementations with high performance by exploiting RDMA operations in InfiniBand. To the best of our knowledge, this is the first high-performance design and implementation of MPICH2 on InfiniBand using RDMA support.Comment: 12 pages, 17 figure

    Proceedings of the Second International Workshop on HyperTransport Research and Applications (WHTRA2011)

    Get PDF
    Proceedings of the Second International Workshop on HyperTransport Research and Applications (WHTRA2011) which was held Feb. 9th 2011 in Mannheim, Germany. The Second International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Low‐latency Java communication devices on RDMA‐enabled networks

    Get PDF
    This is the peer reviewed version of the following article: Expósito, R. R., Taboada, G. L., Ramos, S., Touriño, J., & Doallo, R. (2015). Low‐latency Java communication devices on RDMA‐enabled networks. Concurrency and Computation: Practice and Experience, 27(17), 4852-4879., which has been published in final form at https://doi.org/10.1002/cpe.3473. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.[Abstract] Providing high‐performance inter‐node communication is a key capability for running high performance computing applications efficiently on parallel architectures. In fact, current systems deployments are aggregating a significant number of cores interconnected via advanced networking hardware with Remote Direct Memory Access (RDMA) mechanisms, that enable zero‐copy and kernel‐bypass features. The use of Java for parallel programming is becoming more promising thanks to some useful characteristics of this language, particularly its built‐in multithreading support, portability, easy‐to‐learn properties, and high productivity, along with the continuous increase in the performance of the Java virtual machine. However, current parallel Java applications generally suffer from inefficient communication middleware, mainly based on protocols with high communication overhead that do not take full advantage of RDMA‐enabled networks. This paper presents efficient low‐level Java communication devices that overcome these constraints by fully exploiting the underlying RDMA hardware, providing low‐latency and high‐bandwidth communications for parallel Java applications. The performance evaluation conducted on representative RDMA networks and parallel systems has shown significant point‐to‐point performance increases compared with previous Java communication middleware, allowing to obtain up to 40% improvement in application‐level performance on 4096 cores of a Cray XE6 supercomputer.Ministerio de Economía y Competitividad; TIN2013-42148-PXunta de Galicia; GRC2013/055Ministerio de Educación y Ciencia; AP2010-434

    Design of scalable Java message-passing communications over InfiniBand

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final authenticated version is available online at: https://doi.org/10.1007/s11227-011-0654-9[Abstract] This paper presents ibvdev a scalable and efficient low-level Java message-passing communication device over InfiniBand. The continuous increase in the number of cores per processor underscores the need for efficient communication support for parallel solutions. Moreover, current system deployments are aggregating a significant number of cores through advanced network technologies, such as InfiniBand, increasing the complexity of communication protocols, especially when dealing with hybrid shared/distributed memory architectures such as clusters. Here, Java represents an attractive choice for the development of communication middleware for these systems, as it provides built-in networking and multithreading support. As the gap between Java and compiled languages performance has been narrowing for the last years, Java is an emerging option for High Performance Computing (HPC). The developed communication middleware ibvdev increases Java applications performance on clusters of multicore processors interconnected via InfiniBand through: (1) providing Java with direct access to InfiniBand using InfiniBand Verbs API, somewhat restricted so far to MPI libraries; (2) implementing an efficient and scalable communication protocol which obtains start-up latencies and bandwidths similar to MPI performance results; and (3) allowing its integration in any Java parallel and distributed application. In fact, it has been successfully integrated in the Java messaging library MPJ Express. The experimental evaluation of this middleware on an InfiniBand cluster of multicore processors has shown significant point-to-point performance benefits, up to 85% start-up latency reduction and twice the bandwidth compared to previous Java middleware on InfiniBand. Additionally, the impact of ibvdev on message-passing collective operations is significant, achieving up to one order of magnitude performance increases compared to previous Java solutions, especially when combined with multithreading. Finally, the efficiency of this middleware, which is even competitive with MPI in terms of performance, increments the scalability of communications intensive Java HPC applications.Ministerio de Ciencia e Innovación; TIN2010-1673

    Java in the High Performance Computing arena: Research, practice and experience

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Science of Computer Programming. The final authenticated version is available online at: https://doi.org/10.1016/j.scico.2011.06.002[Abstract] The rising interest in Java for High Performance Computing (HPC) is based on the appealing features of this language for programming multi-core cluster architectures, particularly the built-in networking and multithreading support, and the continuous increase in Java Virtual Machine (JVM) performance. However, its adoption in this area is being delayed by the lack of analysis of the existing programming options in Java for HPC and thorough and up-to-date evaluations of their performance, as well as the unawareness on current research projects in this field, whose solutions are needed in order to boost the embracement of Java in HPC. This paper analyzes the current state of Java for HPC, both for shared and distributed memory programming, presents related research projects, and finally, evaluates the performance of current Java HPC solutions and research developments on two shared memory environments and two InfiniBand multi-core clusters. The main conclusions are that: (1) the significant interest in Java for HPC has led to the development of numerous projects, although usually quite modest, which may have prevented a higher development of Java in this field; (2) Java can achieve almost similar performance to natively compiled languages, both for sequential and parallel applications, being an alternative for HPC programming; (3) the recent advances in the efficient support of Java communications on shared memory and low-latency networks are bridging the gap between Java and natively compiled applications in HPC. Thus, the good prospects of Java in this area are attracting the attention of both industry and academia, which can take significant advantage of Java adoption in HPC.Ministerio de Ciencia e Innovación; TIN2010-16735Ministerio de Educación, Cultura y Deporte; AP2009-211

    Distributed Management of Massive Data: an Efficient Fine-Grain Data Access Scheme

    Get PDF
    This paper addresses the problem of efficiently storing and accessing massive data blocks in a large-scale distributed environment, while providing efficient fine-grain access to data subsets. This issue is crucial in the context of applications in the field of databases, data mining and multimedia. We propose a data sharing service based on distributed, RAM-based storage of data, while leveraging a DHT-based, natively parallel metadata management scheme. As opposed to the most commonly used grid storage infrastructures that provide mechanisms for explicit data localization and transfer, we provide a transparent access model, where data are accessed through global identifiers. Our proposal has been validated through a prototype implementation whose preliminary evaluation provides promising results

    Venice: Exploring Server Architectures for Effective Resource Sharing

    Get PDF
    Consolidated server racks are quickly becoming the backbone of IT infrastructure for science, engineering, and business, alike. These servers are still largely built and organized as when they were distributed, individual entities. Given that many fields increasingly rely on analytics of huge datasets, it makes sense to support flexible resource utilization across servers to improve cost-effectiveness and performance. We introduce Venice, a family of data-center server architectures that builds a strong communication substrate as a first-class resource for server chips. Venice provides a diverse set of resource-joining mechanisms that enables user programs to efficiently leverage non-local resources. To better understand the implications of design decisions about system support for resource sharing we have constructed a hardware prototype that allows us to more accurately measure end-to-end performance of at-scale applications and to explore tradeoffs among performance, power, and resource-sharing transparency. We present results from our initial studies analyzing these tradeoffs when sharing memory, accelerators, or NICs. We find that it is particularly important to reduce or hide latency, that data-sharing access patterns should match the features of the communication channels employed, and that inter-channel collaboration can be exploited for better performance

    An Application-Based Performance Characterization of the Columbia Supercluster

    Get PDF
    Columbia is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processors each, and currently ranked as the second-fastest computer in the world. In this paper, we present the performance characteristics of Columbia obtained on up to four computing nodes interconnected via the InfiniBand and/or NUMAlink4 communication fabrics. We evaluate floating-point performance, memory bandwidth, message passing communication speeds, and compilers using a subset of the HPC Challenge benchmarks, and some of the NAS Parallel Benchmarks including the multi-zone versions. We present detailed performance results for three scientific applications of interest to NASA, one from molecular dynamics, and two from computational fluid dynamics. Our results show that both the NUMAlink4 and the InfiniBand hold promise for application scaling to a large number of processors
    corecore