101 research outputs found

    CLOCIS:Cloud-based conformance testing framework for IoT devices in the future internet

    Get PDF
    In recent years, the Internet of Things (IoT) has not only become ubiquitous in daily life but has also emerged as a pivotal technology across various sectors, including smart factories and smart cities. Consequently, there is a pressing need to ensure the consistent and uninterrupted delivery of IoT services. Conformance testing has thus become an integral aspect of IoT technologies. However, traditional methods of IoT conformance testing fall short of addressing the evolving requirements put forth by both industry and academia. Historically, IoT testing has necessitated a visit to a testing laboratory, implying that both the testing systems and testers must be co-located. Furthermore, there is a notable absence of a comprehensive method for testing an array of IoT standards, especially given their inherent heterogeneity. With a surge in the development of diverse IoT standards, crafting an appropriate testing environment poses challenges. To address these concerns, this article introduces a method for remote IoT conformance testing, underpinned by a novel conceptual architecture termed CLOCIS. This architecture encompasses an extensible approach tailored for a myriad of IoT standards. Moreover, we elucidate the methods and procedures integral to testing IoT devices. CLOCIS, predicated on this conceptual framework, is actualized, and to attest to its viability, we undertake IoT conformance testing and present the results. When leveraging CLOCIS, small and medium-sized enterprises (SMEs) and entities in the throes of IoT service development stand to benefit from a reduced time to market and cost-efficient testing procedures. Additionally, this innovation holds promise for IoT standardization communities, enabling them to champion their standards with renewed vigor

    Ensuring interoperability between network elements in next generation networks

    Get PDF
    Next Generation Networks (NGNs), based on the Internet Protocol (IP), implement several services such as IP-based telephony and are beginning to replace the classic telephony systems. Due to the development and implementation of new powerful services these systems are becoming increasingly complex. Implementing these new services (typically software-based network elements) is often accompanied by unexpected and erratic behaviours which can manifest as interoperability problems. The reason for this caused by insufficient testing at the developing companies. The testing of such products is by nature a costly and time-consuming exercise and therefore cut down to what is considered the maximum acceptable level. Ensuring the interoperability between network elements is a known challenge. However, there exists no concept of which testing methods should be utilised to achieve an acceptable level of quality. The objective of this thesis was to improve the interoperability between network elements in NGNs by creating a testing scheme comprising of three diverse testing methods: conformance testing, interoperability testing and posthoc analysis. In the first project a novel conformance testing methodology for developing sets of conformance test cases for service specifications in NGNs was proposed. This methodology significantly improves the chance of interoperability and provides a considerable enhancement to the currently used interoperability tests. It was evaluated by successfully applying it to the Presence Service. The second report proposed a post-hoc methodology which enables the identification of the ultimate causes for interoperability problems in a NGN in daily operation. The new methods were implemented in the tool IMPACT (IP-Based Multi Protocol Posthoc Analyzer and Conformance Tester), which stores all exchanged messages between network elements in a database. Using SQL queries, the causes for errors can be found efficiently. Overall the presented testing scheme improves significantly the chance that network elements interoperate successfully by providing new methods. Beyond that, the quality of the software product is raised by mapping these methods to phases in a process model and providing well defined steps on which test method is the best suited at a certain stage

    Wireless Authentication Solution and TTCN-3 based Test Framework for ISO-15118 Wireless V2G Communication

    Get PDF
    Vehicle to grid (V2G) communication for electric vehicles and their charging points is already well established by the ISO 15118 standard. The standard allows vehicles to communicate with the charging station using the power cable, i.e. a wired link, but it is improved to enable wireless (WLAN) links as well. This paper aims to provide an implementation accomplishes a wireless authentication solution (WAS). With that the electric vehicles can establish V2G connection when approaching the charging pool, then identify and authenticate the driver and/or the vehicle. Furthermore, the paper presents a TTCN-3 based validation and verification (V&V) framework in order to test the conformance of the prototype implementation against the standard

    A Framework for Model-based Testing of Integrated Modular Avionics

    Get PDF
    In modern aircraft, electronics and control systems are designed based on the Integrated Modular Avionics (IMA) system architecture. While this has numerous advantages (reduction of weight, reduced power and fuel consumption, reduction of development cost and certification effort), the IMA platform also adds an additional layer of complexity. Due to the safety-critical nature of many avionics functions careful and accurate verification and testing are imperative. This thesis describes results achieved from research on model-based testing of IMA systems, in part obtained during the European research project SCARLETT. It presents a complete framework which enables IMA domain experts to design and run model-based tests on bare module, configured module, and application level in a standardised test environment. The first part of this thesis provides background information on the relevant topics: the IMA concept, domain-specific languages, model-based testing, and the TTCN-3 standard. The second part introduces the IMA Test Modelling Language (ITML) framework and its components. It describes a tailored TTCN-3 test environment with appropriate adapters and codecs. Based on MetaEdit and its meta-metamodel GOPPRR, it defines the three variants of the domain-specific language ITML, each with its abstract and concrete syntax as well as static and dynamic semantics. The process of test procedure generation from ITML models is explained in detail. Furthermore, the design and implementation of a universal Test Agent is shown. A dedicated communication protocol for controlling the agent is defined as well. The third part provides an evaluation of the framework. It shows usage scenarios in the SCARLETT project, gives a comparison to related tools and approaches, and explains the advantages of using the ITML framework for an IMA domain expert. The final part presents several example ITML models. It also provides reference material like XML schemata, framework source code, and model validators

    Towards a Runtime Standard-Based Testing Framework for Dynamic Distributed Information Systems

    Get PDF
    International audienceIn this work, we are interested in testing dynamic distributed information systems. That is we consider a decentralized information system which can evolve over time. For this purpose we propose a runtime standard-based test execution platform. The latter is built upon the normalized TTCN-3 specification and implementation testing language. The proposed platform ensures execution of tests cases at runtime. Moreover it considers both structural and behavioral adaptations of the system under test. In addition, it is equipped with a test isolation layer that minimizes the risk of interference between business and testing processes. The platform also generates a minimal subset of test scenarios to execute after each adaptation. Finally, it proposes an optimal strategy to place the TTCN-3 test components among the system execution nodes

    Quality assessment framework for business processes as a service in a heterogeneous cloud environment

    Get PDF
    A business process is an activity or set of multiple activities that will fulfill a particular objective of the organization. Business process management (BPM) is a methodological way for the improvement of those processes. Due to increased competition in the market, companies are shifting their business processes online using some sophisticated Business process management (BPM) tools and methods. The focus of this thesis is to design and implementation of an initial testing system for business processes which are published on a heterogeneous Cloud environment. This thesis documents researched the state of the art of business process testing (BPT) which covers some testing techniques and selected the best-suited method for testing business process which is responsible for the quality of the system. Also, it concentrates on the state of the art of testing the Cloud. It focus on different methodologies to test SaaS, PaaS, and IaaS. The main objective for that, is to understand the way how testing Cloud environment works, hence, it will lead to the understanding of testing of business processes as a service. Additionally, it explains the general architecture of the TTCN-3. A design of a test system to test the business process based on TTCN-3 is presented. A case study of CloudSocket has been studied and according to the requirement, we have introduced an initial work for testing BPaaS in a heterogeneous Cloud environment. This initial test system was implemented and validated in the CloudSocket Marketplace

    Assessing and Improving Interoperability of Distributed Systems

    Get PDF
    InteroperabilitĂ€t von verteilten Systemen ist eine Grundlage fĂŒr die Entwicklung von neuen und innovativen GeschĂ€ftslösungen. Sie erlaubt es existierende Dienste, die auf verschiedenen Systemen angeboten werden, so miteinander zu verknĂŒpfen, dass neue oder erweiterte Dienste zur VerfĂŒgung gestellt werden können. Außerdem kann durch diese Integration die ZuverlĂ€ssigkeit von Diensten erhöht werden. Das Erreichen und Bewerten von InteroperabilitĂ€t stellt jedoch eine finanzielle und zeitliche Herausforderung dar. Zur Sicherstellung und Bewertung von InteroperabilitĂ€t werden systematische Methoden benötigt. Um systematisch InteroperabilitĂ€t von Systemen erreichen und bewerten zu können, wurde im Rahmen der vorliegenden Arbeit ein Prozess zur Verbesserung und Beurteilung von InteroperabilitĂ€t (IAI) entwickelt. Der IAI-Prozess beinhaltet drei Phasen und kann die InteroperabilitĂ€t von verteilten, homogenen und auch heterogenen Systemen bewerten und verbessern. Die Bewertung erfolgt dabei durch InteroperabilitĂ€tstests, die manuell oder automatisiert ausgefĂŒhrt werden können. FĂŒr die Automatisierung von InteroperabilitĂ€tstests wird eine neue Methodik vorgestellt, die einen Entwicklungsprozess fĂŒr automatisierte InteroperabilitĂ€tstestsysteme beinhaltet. Die vorgestellte Methodik erleichtert die formale und systematische Bewertung der InteroperabilitĂ€t von verteilten Systemen. Im Vergleich zur manuellen PrĂŒfung von InteroperabilitĂ€t gewĂ€hrleistet die hier vorgestellte Methodik eine höhere Testabdeckung, eine konsistente TestdurchfĂŒhrung und wiederholbare InteroperabilitĂ€tstests. Die praktische Anwendbarkeit des IAI-Prozesses und der Methodik fĂŒr automatisierte InteroperabilitĂ€tstests wird durch drei Fallstudien belegt. In der ersten Fallstudie werden Prozess und Methodik fĂŒr Internet Protocol Multimedia Subsystem (IMS) Netzwerke instanziiert. Die InteroperabilitĂ€t von IMS-Netzwerken wurde bisher nur manuell getestet. In der zweiten und dritten Fallstudie wird der IAI-Prozess zur Beurteilung und Verbesserung der InteroperabilitĂ€t von Grid- und Cloud-Systemen angewendet. Die Bewertung und Verbesserung dieser InteroperabilitĂ€t ist eine Herausforderung, da Grid- und Cloud-Systeme im Gegensatz zu IMS-Netzwerken heterogen sind. Im Rahmen der Fallstudien werden Möglichkeiten fĂŒr Integrations- und InteroperabilitĂ€tslösungen von Grid- und Infrastructure as a Service (IaaS) Cloud-Systemen sowie von Grid- und Platform as a Service (PaaS) Cloud-Systemen aufgezeigt. Die vorgestellten Lösungen sind in der Literatur bisher nicht dokumentiert worden. Sie ermöglichen die komplementĂ€re Nutzung von Grid- und Cloud-Systemen, eine vereinfachte Migration von Grid-Anwendungen in ein Cloud-System sowie eine effiziente Ressourcennutzung. Die InteroperabilitĂ€tslösungen werden mit Hilfe des IAI-Prozesses bewertet. Die DurchfĂŒhrung der Tests fĂŒr Grid-IaaS-Cloud-Systeme erfolgte manuell. Die InteroperabilitĂ€t von Grid-PaaS-Cloud-Systemen wird mit Hilfe der Methodik fĂŒr automatisierte InteroperabilitĂ€tstests bewertet. InteroperabilitĂ€tstests und deren Beurteilung wurden bisher in der Grid- und Cloud-Community nicht diskutiert, obwohl sie eine Basis fĂŒr die Entwicklung von standardisierten Schnittstellen zum Erreichen von InteroperabilitĂ€t zwischen Grid- und Cloud-Systemen bieten.Achieving interoperability of distributed systems offers means for the development of new and innovative business solutions. Interoperability allows the combination of existing services provided on different systems, into new or extended services. Such an integration can also increase the reliability of the provided service. However, achieving and assessing interoperability is a technical challenge that requires high effort regarding time and costs. The reasons are manifold and include differing implementations of standards as well as the provision of proprietary interfaces. The implementations need to be engineered to be interoperable. Techniques that assess and improve interoperability systematically are required. For the assurance of reliable interoperation between systems, interoperability needs to be assessed and improved in a systematic manner. To this aim, we present the Interoperability Assessment and Improvement (IAI) process, which describes in three phases how interoperability of distributed homogeneous and heterogeneous systems can be improved and assessed systematically. The interoperability assessment is achieved by means of interoperability testing, which is typically performed manually. For the automation of interoperability test execution, we present a new methodology including a generic development process for a complete and automated interoperability test system. This methodology provides means for a formalized and systematic assessment of systems' interoperability in an automated manner. Compared to manual interoperability testing, the application of our methodology has the following benefits: wider test coverage, consistent test execution, and test repeatability. We evaluate the IAI process and the methodology for automated interoperability testing in three case studies. Within the first case study, we instantiate the IAI process and the methodology for Internet Protocol Multimedia Subsystem (IMS) networks, which were previously assessed for interoperability only in a manual manner. Within the second and third case study, we apply the IAI process to assess and improve the interoperability of grid and cloud computing systems. Their interoperability assessment and improvement is challenging, since cloud and grid systems are, in contrast to IMS networks, heterogeneous. We develop integration and interoperability solutions for grids and Infrastructure as a Service (IaaS) clouds as well as for grids and Platform as a Service (PaaS) clouds. These solutions are unique and foster complementary usage of grids and clouds, simplified migration of grid applications into the cloud, as well as efficient resource utilization. In addition, we assess the interoperability of the grid-cloud interoperability solutions. While the tests for grid-IaaS clouds are performed manually, we applied our methodology for automated interoperability testing for the assessment of interoperability to grid-PaaS cloud interoperability successfully. These interoperability assessments are unique in the grid-cloud community and provide a basis for the development of standardized interfaces improving the interoperability between grids and clouds
    • 

    corecore