7,172 research outputs found

    Techniques for improving the finite length performance of sparse superposition codes

    Get PDF
    Sparse superposition codes are a recent class of codes introduced by Barron and Joseph for efficient communication over the AWGN channel. With an appropriate power allocation, these codes have been shown to be asymptotically capacity-achieving with computationally feasible decoding. However, a direct implementation of the capacity-achieving construction does not give good finite length error performance. In this paper, we consider sparse superposition codes with approximate message passing (AMP) decoding, and describe a variety of techniques to improve their finite length performance. These include an iterative algorithm for SPARC power allocation, guidelines for choosing codebook parameters, and estimating a critical decoding parameter online instead of pre-computation. We also show how partial outer codes can be used in conjunction with AMP decoding to obtain a steep waterfall in the error performance curves. We compare the error performance of AMP-decoded sparse superposition codes with coded modulation using LDPC codes from the WiMAX standard

    Binding and Normalization of Binary Sparse Distributed Representations by Context-Dependent Thinning

    Get PDF
    Distributed representations were often criticized as inappropriate for encoding of data with a complex structure. However Plate's Holographic Reduced Representations and Kanerva's Binary Spatter Codes are recent schemes that allow on-the-fly encoding of nested compositional structures by real-valued or dense binary vectors of fixed dimensionality. In this paper we consider procedures of the Context-Dependent Thinning which were developed for representation of complex hierarchical items in the architecture of Associative-Projective Neural Networks. These procedures provide binding of items represented by sparse binary codevectors (with low probability of 1s). Such an encoding is biologically plausible and allows a high storage capacity of distributed associative memory where the codevectors may be stored. In contrast to known binding procedures, Context-Dependent Thinning preserves the same low density (or sparseness) of the bound codevector for varied number of component codevectors. Besides, a bound codevector is not only similar to another one with similar component codevectors (as in other schemes), but it is also similar to the component codevectors themselves. This allows the similarity of structures to be estimated just by the overlap of their codevectors, without retrieval of the component codevectors. This also allows an easy retrieval of the component codevectors. Examples of algorithmic and neural-network implementations of the thinning procedures are considered. We also present representation examples for various types of nested structured data (propositions using role-filler and predicate-arguments representation schemes, trees, directed acyclic graphs) using sparse codevectors of fixed dimension. Such representations may provide a fruitful alternative to the symbolic representations of traditional AI, as well as to the localist and microfeature-based connectionist representations

    Generalized Approximate Message-Passing Decoder for Universal Sparse Superposition Codes

    Get PDF
    Sparse superposition (SS) codes were originally proposed as a capacity-achieving communication scheme over the additive white Gaussian noise channel (AWGNC) [1]. Very recently, it was discovered that these codes are universal, in the sense that they achieve capacity over any memoryless channel under generalized approximate message-passing (GAMP) decoding [2], although this decoder has never been stated for SS codes. In this contribution we introduce the GAMP decoder for SS codes, we confirm empirically the universality of this communication scheme through its study on various channels and we provide the main analysis tools: state evolution and potential. We also compare the performance of GAMP with the Bayes-optimal MMSE decoder. We empirically illustrate that despite the presence of a phase transition preventing GAMP to reach the optimal performance, spatial coupling allows to boost the performance that eventually tends to capacity in a proper limit. We also prove that, in contrast with the AWGNC case, SS codes for binary input channels have a vanishing error floor in the limit of large codewords. Moreover, the performance of Hadamard-based encoders is assessed for practical implementations

    Are v1 simple cells optimized for visual occlusions? : A comparative study

    Get PDF
    Abstract: Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. Author Summary: The statistics of our visual world is dominated by occlusions. Almost every image processed by our brain consists of mutually occluding objects, animals and plants. Our visual cortex is optimized through evolution and throughout our lifespan for such stimuli. Yet, the standard computational models of primary visual processing do not consider occlusions. In this study, we ask what effects visual occlusions may have on predicted response properties of simple cells which are the first cortical processing units for images. Our results suggest that recently observed differences between experiments and predictions of the standard simple cell models can be attributed to occlusions. The most significant consequence of occlusions is the prediction of many cells sensitive to center-surround stimuli. Experimentally, large quantities of such cells are observed since new techniques (reverse correlation) are used. Without occlusions, they are only obtained for specific settings and none of the seminal studies (sparse coding, ICA) predicted such fields. In contrast, the new type of response naturally emerges as soon as occlusions are considered. In comparison with recent in vivo experiments we find that occlusive models are consistent with the high percentages of center-surround simple cells observed in macaque monkeys, ferrets and mice

    Replica Analysis and Approximate Message Passing Decoder for Superposition Codes

    Full text link
    Superposition codes are efficient for the Additive White Gaussian Noise channel. We provide here a replica analysis of the performances of these codes for large signals. We also consider a Bayesian Approximate Message Passing decoder based on a belief-propagation approach, and discuss its performance using the density evolution technic. Our main findings are 1) for the sizes we can access, the message-passing decoder outperforms other decoders studied in the literature 2) its performance is limited by a sharp phase transition and 3) while these codes reach capacity as BB (a crucial parameter in the code) increases, the performance of the message passing decoder worsen as the phase transition goes to lower rates.Comment: 5 pages, 5 figures, To be presented at the 2014 IEEE International Symposium on Information Theor
    • …
    corecore