40,884 research outputs found

    AliEnFS - a Linux File System for the AliEn Grid Services

    Full text link
    Among the services offered by the AliEn (ALICE Environment http://alien.cern.ch) Grid framework there is a virtual file catalogue to allow transparent access to distributed data-sets using various file transfer protocols. alienfsalienfs (AliEn File System) integrates the AliEn file catalogue as a new file system type into the Linux kernel using LUFS, a hybrid user space file system framework (Open Source http://lufs.sourceforge.net). LUFS uses a special kernel interface level called VFS (Virtual File System Switch) to communicate via a generalised file system interface to the AliEn file system daemon. The AliEn framework is used for authentication, catalogue browsing, file registration and read/write transfer operations. A C++ API implements the generic file system operations. The goal of AliEnFS is to allow users easy interactive access to a worldwide distributed virtual file system using familiar shell commands (f.e. cp,ls,rm ...) The paper discusses general aspects of Grid File Systems, the AliEn implementation and present and future developments for the AliEn Grid File System.Comment: 9 pages, 12 figure

    A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units

    Get PDF
    Agent-based modeling is a technique for modeling dynamic systems from the bottom up. Individual elements of the system are represented computationally as agents. The system-level behaviors emerge from the micro-level interactions of the agents. Contemporary state-of-the-art agent-based modeling toolkits are essentially discrete-event simulators designed to execute serially on the Central Processing Unit (CPU). They simulate Agent-Based Models (ABMs) by executing agent actions one at a time. In addition to imposing an un-natural execution order, these toolkits have limited scalability. In this article, we investigate data-parallel computer architectures such as Graphics Processing Units (GPUs) to simulate large scale ABMs. We have developed a series of efficient, data parallel algorithms for handling environment updates, various agent interactions, agent death and replication, and gathering statistics. We present three fundamental innovations that provide unprecedented scalability. The first is a novel stochastic memory allocator which enables parallel agent replication in O(1) average time. The second is a technique for resolving precedence constraints for agent actions in parallel. The third is a method that uses specialized graphics hardware, to gather and process statistical measures. These techniques have been implemented on a modern day GPU resulting in a substantial performance increase. We believe that our system is the first ever completely GPU based agent simulation framework. Although GPUs are the focus of our current implementations, our techniques can easily be adapted to other data-parallel architectures. We have benchmarked our framework against contemporary toolkits using two popular ABMs, namely, SugarScape and StupidModel.GPGPU, Agent Based Modeling, Data Parallel Algorithms, Stochastic Simulations

    The AliEn system, status and perspectives

    Full text link
    AliEn is a production environment that implements several components of the Grid paradigm needed to simulate, reconstruct and analyse HEP data in a distributed way. The system is built around Open Source components, uses the Web Services model and standard network protocols to implement the computing platform that is currently being used to produce and analyse Monte Carlo data at over 30 sites on four continents. The aim of this paper is to present the current AliEn architecture and outline its future developments in the light of emerging standards.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, Word, 10 figures. PSN MOAT00

    Distributed Management of Massive Data: an Efficient Fine-Grain Data Access Scheme

    Get PDF
    This paper addresses the problem of efficiently storing and accessing massive data blocks in a large-scale distributed environment, while providing efficient fine-grain access to data subsets. This issue is crucial in the context of applications in the field of databases, data mining and multimedia. We propose a data sharing service based on distributed, RAM-based storage of data, while leveraging a DHT-based, natively parallel metadata management scheme. As opposed to the most commonly used grid storage infrastructures that provide mechanisms for explicit data localization and transfer, we provide a transparent access model, where data are accessed through global identifiers. Our proposal has been validated through a prototype implementation whose preliminary evaluation provides promising results

    AliEn Resource Brokers

    Full text link
    AliEn (ALICE Environment) is a lightweight GRID framework developed by the Alice Collaboration. When the experiment starts running, it will collect data at a rate of approximately 2 PB per year, producing O(109) files per year. All these files, including all simulated events generated during the preparation phase of the experiment, must be accounted and reliably tracked in the GRID environment. The backbone of AliEn is a distributed file catalogue, which associates universal logical file name to physical file names for each dataset and provides transparent access to datasets independently of physical location. The file replication and transport is carried out under the control of the File Transport Broker. In addition, the file catalogue maintains information about every job running in the system. The jobs are distributed by the Job Resource Broker that is implemented using a simplified pull (as opposed to traditional push) architecture. This paper describes the Job and File Transport Resource Brokers and shows that a similar architecture can be applied to solve both problems.Comment: 5 pages, 8 figures, CHEP 03 conferenc

    Design and Implementation of a Distributed Middleware for Parallel Execution of Legacy Enterprise Applications

    Get PDF
    A typical enterprise uses a local area network of computers to perform its business. During the off-working hours, the computational capacities of these networked computers are underused or unused. In order to utilize this computational capacity an application has to be recoded to exploit concurrency inherent in a computation which is clearly not possible for legacy applications without any source code. This thesis presents the design an implementation of a distributed middleware which can automatically execute a legacy application on multiple networked computers by parallelizing it. This middleware runs multiple copies of the binary executable code in parallel on different hosts in the network. It wraps up the binary executable code of the legacy application in order to capture the kernel level data access system calls and perform them distributively over multiple computers in a safe and conflict free manner. The middleware also incorporates a dynamic scheduling technique to execute the target application in minimum time by scavenging the available CPU cycles of the hosts in the network. This dynamic scheduling also supports the CPU availability of the hosts to change over time and properly reschedule the replicas performing the computation to minimize the execution time. A prototype implementation of this middleware has been developed as a proof of concept of the design. This implementation has been evaluated with a few typical case studies and the test results confirm that the middleware works as expected

    Toward a Formal Semantics for Autonomic Components

    Full text link
    Autonomic management can improve the QoS provided by parallel/ distributed applications. Within the CoreGRID Component Model, the autonomic management is tailored to the automatic - monitoring-driven - alteration of the component assembly and, therefore, is defined as the effect of (distributed) management code. This work yields a semantics based on hypergraph rewriting suitable to model the dynamic evolution and non-functional aspects of Service Oriented Architectures and component-based autonomic applications. In this regard, our main goal is to provide a formal description of adaptation operations that are typically only informally specified. We contend that our approach makes easier to raise the level of abstraction of management code in autonomic and adaptive applications.Comment: 11 pages + cover pag
    • …
    corecore