2,258 research outputs found

    Passive stabilization for large space systems

    Get PDF
    The optimal tuning of multiple tuned-mass dampers for the transient vibration damping of large space structures is investigated. A multidisciplinary approach is used. Structural dynamic techniques are applied to gain physical insight into absorber/structure interaction and to optimize specific cases. Modern control theory and parameter optimization techniques are applied to the general optimization problem. A design procedure for multi-absorber multi-DOF vibration damping problems is presented. Classical dynamic models are extended to investigate the effects of absorber placement, existing structural damping, and absorber cross-coupling on the optimal design synthesis. The control design process for the general optimization problem is formulated as a linear output feedback control problem via the development of a feedback control canonical form. The techniques are applied to sample micro-g and pointing problems on the NASA dual keel space station

    Active and passive vibration suppression for space structures

    Get PDF
    The relative benefits of passive and active vibration suppression for large space structures (LSS) are discussed. The intent is to sketch the true ranges of applicability of these approaches using previously published technical results. It was found that the distinction between active and passive vibration suppression approaches is not as sharp as might be thought at first. The relative simplicity, reliability, and cost effectiveness touted for passive measures are vitiated by 'hidden costs' bound up with detailed engineering implementation issues and inherent performance limitations. At the same time, reliability and robustness issues are often cited against active control. It is argued that a continuum of vibration suppression measures offering mutually supporting capabilities is needed. The challenge is to properly orchestrate a spectrum of methods to reap the synergistic benefits of combined advanced materials, passive damping, and active control

    Semi-active vibration control of a three degree-of-freedom scaled frame with a magneto-rheological damper

    Get PDF
    The present work describes part of the R&D on using a semi-active structural control technique in a civil engineering experimental model frame equipped with a MR damper, developed within COVICOCEPAD project approved in the framework of Eurocores program S3T. Some results are provided associated with the calibration of a MR damper at FEUP as well as on the experimental modal identification of the dynamic properties of a small-scale metallic frame, without and with inclusion of a specific MR device. Some numerical results of the controlled frame under simulated earthquakes are given, to be compared with the experimental results of such frame installed in a Quanser shaking table.This work reports research on the seismic analyses of metallic model steel frames equipped with smart devices, developed under the R&D Eurocores Project COVICOCEPAD within the S3T Program, approved independently by European Science Foundation (ESF, Strasbourg). The Portuguese partners have been financially supported by Portuguese "FCT - Fundacao para a Ciencia e a Tecnologia" (Lisbon - Portugal) under Programa Operacional Ciencia e Inovacao 2010 (POCI 2010) of the III Quadro Comunitario de Apoio sponsored by FEDER, under the EC Sixth Framework Program

    Design and validation of a hardware-in-the-loop test bench for evaluating the performance of an active mass damper

    Get PDF
    The purpose of this study is to propose an innovative solution for evaluating the performance of a full-scale Active Mass Damper (AMD). The AMD adopted is a custom hydraulic actuator, developed for active control of existing buildings against earthquakes. For vibration control, a sky-hook algorithm was implemented. Its characteristics ensure good robustness, which is fundamental in structural engineering since buildings are subjected to significant variation in dynamic properties in presence of damage or ambient conditions. A Hardware-In-the-Loop (HIL) test bench was specifically designed to simulate the actual working condition of the anti-seismic system. The HIL setup consists of a shaking table moved by a hydraulic actuator in accordance with the roof's displacement, evaluated using a structural numerical model of the building to which the AMD is fixed. The presence of two distinct active systems (HIL and AMD) could generate control issues; therefore, a Triple Variable Control logic was introduced to reduce the interaction delay. The effectiveness of the proposed AMD is validated comparing the roof's displacement in an uncontrolled structure with that in a controlled one. Also, the robustness of the control algorithm was verified using a non-linear structural model and applying seismic excitation at different intensities

    Preview-based techniques for vehicle suspension control: a state-of-the-art review

    Get PDF
    Abstract Automotive suspension systems are key to ride comfort and handling performance enhancement. In the last decades semi-active and active suspension configurations have been the focus of intensive automotive engineering research, and have been implemented by the industry. The recent advances in road profile measurement and estimation systems make road-preview-based suspension control a viable solution for production vehicles. Despite the availability of a significant body of papers on the topic, the literature lacks a comprehensive and up-to-date survey on the variety of proposed techniques for suspension control with road preview, and the comparison of their effectiveness. To cover the gap, this literature review deals with the research conducted over the past decades on the topic of semi-active and active suspension controllers with road preview. The main formulations are reported for each control category, and the respective features are critically analysed, together with the most relevant performance indicators. The paper also discusses the effect of the road preview time on the resulting system performance, and identifies control development trends

    Report of the Electromechanical Subsystems Panel

    Get PDF
    Deficiencies in electromechanical flight technology are evaluated and development recommendations are made. Specific items discussed include magnetic bearings, lubrication for long life, signal and power transfer devices, servo sensing devices, deployment/retraction devices, cryogenic devices, data storage, and ordnance substitutes

    The NASA controls-structures interaction technology program

    Get PDF
    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program
    corecore