1,101 research outputs found

    MISAT: Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    Get PDF
    MISAT is a research and development cluster which will create a small satellite platform based on Micro Systems Technology (MST) aiming at innovative space as well as terrestrial applications. MISAT is part of the Dutch MicroNed program which has established a microsystems infrastructure to fully exploit the MST knowledge chain involving public and industrial partners alike. The cluster covers MST-related developments for the spacecraft bus and payload, as well as the satellite architecture. Particular emphasis is given to distributed systems in space to fully exploit the potential of miniaturization for future mission concepts. Examples of current developments are wireless sensor and actuator networks with plug and play characteristics, autonomous digital Sun sensors, re-configurable radio front ends with minimum power consumption, or micro-machined electrostatic accelerometer and gradiometer system for scientific research in fundamental physics as well as geophysics. As a result of MISAT, a first nano-satellite will be launched in 2007 to demonstrate the next generation of Sun sensors, power subsystems and satellite architecture technology. Rapid access to in-orbit technology demonstration and verification will be provided by a series of small satellites. This will include a formation flying mission, which will increasingly rely on MISAT technology to improve functionality and reduce size, mass and power for advanced technology demonstration and novel scientific applications.

    A review and perspective on optical phased array for automotive LiDAR

    Get PDF
    This paper aims to review the state of the art of Light Detection and Ranging (LiDAR) sensors for automotive applications, and particularly for automated vehicles, focusing on recent advances in the field of integrated LiDAR, and one of its key components: the Optical Phased Array (OPA). LiDAR is still a sensor that divides the automotive community, with several automotive companies investing in it, and some companies stating that LiDAR is a ‘useless appendix’. However, currently there is not a single sensor technology able to robustly and completely support automated navigation. Therefore, LiDAR, with its capability to map in 3 dimensions (3D) the vehicle surroundings, is a strong candidate to support Automated Vehicles (AVs). This manuscript highlights current AV sensor challenges, and it analyses the strengths and weaknesses of the perception sensor currently deployed. Then, the manuscript discusses the main LiDAR technologies emerging in automotive, and focuses on integrated LiDAR, challenges associated with light beam steering on a chip, the use of Optical Phased Arrays, finally discussing current factors hindering the affirmation of silicon photonics OPAs and their future research directions

    An overview of lidar imaging systems for autonomous vehicles

    Get PDF
    Lidar imaging systems are one of the hottest topics in the optronics industry. The need to sense the surroundings of every autonomous vehicle has pushed forward a race dedicated to deciding the final solution to be implemented. However, the diversity of state-of-the-art approaches to the solution brings a large uncertainty on the decision of the dominant final solution. Furthermore, the performance data of each approach often arise from different manufacturers and developers, which usually have some interest in the dispute. Within this paper, we intend to overcome the situation by providing an introductory, neutral overview of the technology linked to lidar imaging systems for autonomous vehicles, and its current state of development. We start with the main single-point measurement principles utilized, which then are combined with different imaging strategies, also described in the paper. An overview of the features of the light sources and photodetectors specific to lidar imaging systems most frequently used in practice is also presented. Finally, a brief section on pending issues for lidar development in autonomous vehicles has been included, in order to present some of the problems which still need to be solved before implementation may be considered as final. The reader is provided with a detailed bibliography containing both relevant books and state-of-the-art papers for further progress in the subject.Peer ReviewedPostprint (published version

    MISAT:Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    Get PDF

    MISAT:Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    Get PDF

    MISAT:Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    Get PDF

    Race car data acquisition system

    Get PDF
    Implementació d'un sistema per la adquisició de dades en vehicles de carreres de resistència. Construcció d'una PCB per l'adquisició de dades del bus CAN del vehicle

    Nanostructured Gas Sensors for Health Care: An Overview

    Get PDF
    Nanostructured platforms have been utilized for fabrication of small, sensitive and reliable gas sensing devices owing to high functionality, enhanced charge transport and electro-catalytic property. As a result of globalization, rapid, sensitive and selective detection of gases in environment is essential for health care and security. Nonmaterial such as metal, metal oxides, organic polymers, and organic-inorganic hybrid nanocomposites exhibit interesting optical, electrical, magnetic and molecular properties, and hence are found potential gas sensing materials. Morphological, electrical, and optical properties of such nanostructures can be tailored via controlling the precursor concentration and synthesis conditions resulting to achieve desired sensing. This review presents applications of nano-enabling gas sensors to detect gases for environment monitoring. The recent update, challenges, and future vision for commercial applications of such sensor are also described here
    • …
    corecore