23 research outputs found

    Modeling of micro-scale touch sensations for use with haptically augmented reality

    Get PDF
    Possessing dexterity and sensory perceptions, the human hand is a versatile tool that can grasp, hold, and manipulate objects using various postures and forces interacting with the environment. Many industrial tasks are replacing human hands with anthropomorphic robotic hands. In skillful tasks such as micro surgical operations, a master-slave interface system of robotic hands is required to emulate a human hand\u27s dexterity by using glove controllers with force sensors for telemanipulation. Although these interface techniques are widely applied for large scale robots, little has been accomplished for micro-scale robots due to the constraints and complexity imposed by miniaturization. To provide sensible haptic control and feedback from robots at the micro-level, this work investigates the intricacies associated with the use of micro-scale robotic actuators with the intention of using them with haptic feedback systems. This work also develops a system model to test the ability of computing elements that emulate a microrobotic hand\u27s tactile perception of stiffness. An interface glove was used to collect control data from the user, which was used alongside a Matlab model to simulate the operation and control of two different microhand designs. In order to control the microhand device accurately, feedback from simulated sensors was used to affect the airflow of the pneumatic system driving the displacement of the microhand. Four major components were developed for the overall system. The glove interface gives the operator a method to interact with the system. The microhand modeling took place in two components. The first component was the model of the microhand itself. The other component needed was a pneumatic subsystem to drive the microhand operation. The final major component developed was a graphical user interface to give the operator feedback as to what is happening in the target environment. The integration of all of these components allows for experimentation of the intricacies of operating with these microhand devices. The investigation of this micro-haptic system shows that some parameters make the system perform faster and more accurately than others. Metrics such as percent error and settling time of the displacement of one micro-finger are shown to measure success of each method. Future improvements for this system could include the integration of pneumatically controlled balloon micro-actuators with the operator\u27s glove interface or implementing more accurate contact mechanics into the model

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    A methodology for design and appraisal of surgical robotic systems

    Get PDF
    Surgical robotics is a growing discipline, continuously expanding with an influx of new ideas and research. However, it is important that the development of new devices take account of past mistakes and successes. A structured approach is necessary, as with proliferation of such research, there is a danger that these lessons will be obscured, resulting in the repetition of mistakes and wasted effort and energy. There are several research paths for surgical robotics, each with different risks and opportunities and different methodologies to reach a profitable outcome. The main emphasis of this paper is on a methodology for ‘applied research’ in surgical robotics. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers, the most important first two tiers, and thus gain some acceptability. However, the lack of conformity to the criteria in the top tier, and the inability to conclusively prove increased clinical benefit, is shown to be hampering their potential in gaining wide establishment

    MICROPOLYHEDRA AND THEIR APPLICATIONS AS A CHEMICAL DISPLAY

    Get PDF
    Inspired by the readily observed phenomenon of self-assembly in nature, multiple self-assembling microfabrication techniques have been developed to fabricate various 3D structures in both micro and nanoscale. Among the structures that can be fabricated via self-assembly are polyhedra, an attractive model system for studying a wide range of disciplines including mathematics, chemistry and biology. While polyhedra have been considered as an attractive model system with a wide range of implications in multiple fields of study, they are also an effective choice of encapsulant in particle technology to enable spatially controlled chemical reactions. From the formation of milk from fat globules to the development of the central nervous system (CNS) through diffusible chemoattractants, nature has benefitted from selecting and fine-tuning particles to enable spatially controlled chemistry. In past studies, scientists have mainly utilized particle technology to develop an effective system of drug delivery in micro and nanoscale. However, the potential application of particle technology is unlimited; we were inspired to develop a novel application of a chemical display in addition to other existing applications of particle technology. We herein describe a concept of a chemical display system that can generate a dynamic pattern based on a controlled chemical release from an array of porous self-assembled micropolyhedra with various tunable properties such as dimensions, pore sizes, chemical concentrations and arrangements. Based on the idea of controlled chemical release via particle technology, our goal is to develop a chemical display system that would be able to address an inherent limitation that exists in conventional electronic display. A concept of a chemical display would benefit from the absence of components or interfaces that connect each pixel, allowing increased freedom in both design and utility. We fabricated our chemical display system based on an array of self-assembled micropolyhedra, a structure that can be produced in parallel at high efficiency. In this study, we have successfully demonstrated the viability of a chemical display system by loading porous self-folded metallic cubes with chemicals and by precisely controlling the porosity, volume and chemical concentration. We expect that our highly tunable chemical display system based on a self-assembled micropolyhedra would be able to benefit current display systems by complementing currently existing electronic displays. We also anticipate that the technology could open up new possibilities in other fields such as biotechnology, benefitting from a sequential release of chemicals, cells and more. Advisor: Dr. David H. Gracias Reader: Dr. Honggang Cu

    Development of novel micropneumatic grippers for biomanipulation

    Get PDF
    Microbjects with dimensions from 1 μm to 1 mm have been developed recently for different aspects and purposes. Consequently, the development of handling and manipulation tools to fulfil this need is urgently required. Micromanipulation techniques could be generally categorized according to their actuation method such as electrostatic, thermal, shape memory alloy, piezoelectric, magnetic, and fluidic actuation. Each of which has its advantage and disadvantage. The fluidic actuation has been overlooked in MEMS despite its satisfactory output in the micro-scale. This thesis presents different families of pneumatically driven, low cost, compatible with biological environment, scalable, and controllable microgrippers. The first family demonstrated a polymeric microgripper that was laser cut and actuated pneumatically. It was tested to manipulate microparticles down to 200 microns. To overcome the assembly challenges that arise in this family, the second family was proposed. The second family was a micro-cantilever based microgripper, where the device was assembled layer by layer to form a 3D structure. The microcantilevers were fabricated using photo-etching technique, and demonstrated the applicability to manipulate micro-particles down to 200 microns using automated pick-and-place procedure. In addition, this family was used as a tactile-detector as well. Due to the angular gripping scheme followed by the above mentioned families, gripping smaller objects becomes a challenging task. A third family following a parallel gripping scheme was proposed allowing the gripping of smaller objects to be visible. It comprises a compliant structure microgripper actuated pneumatically and fabricated using picosecond laser technology, and demonstrated the capability of gripping microobject as small as 100 μm microbeads. An FEA modelling was employed to validate the experimental and analytical results, and excellent matching was achieved

    4D Microprinting Based on Liquid Crystalline Elastomers

    Get PDF
    Two-photon laser printing (2PLP) is a disruptive three-dimensional (3D) printing technique that can afford structural fabrication at the submicrometer scale. Apart from constructing static 3D structures, research in fabricating dynamic ones, known as "4D printing”, is becoming a burgeoning field. 4D printed structures exhibit adaptability or tunability towards their environment through the control of an external stimulus. In contrast to the rapid growth in macroscale fabrication, progress in microprinted actuators has only been scarcely reported. Liquid crystal elastomer (LCE) stands out among the promising classes of smart materials for fabricating microrobotics or microactuators due to its distinct anisotropic property, which enables the printed structures to exhibit automated reversible movements upon exposure to stimuli without environmental limitations. Nevertheless, the use of 2PLP for the manufacture of 4D printed LCE microstructures with high versatility and complexity have presented some challenges, limiting their implementation in final applications. This thesis aims to overcome two main obstacles faced in this regard: first, the limitation of two-photon printable stimuli-responsive materials; and second, the lack of a facile approach for aligning liquid crystal (LC) within three dimensions. The first part of this thesis aims on expanding the library of materials used for implementing light responsiveness into LC microstructures, as light provides a higher degree of temporal and spatial control compared to other stimuli. The initial approach has involved incorporation of acrylate-functionalized photoresponsive molecules, such as azobenzene and the donor-acceptor Stenhouse adduct (DASA), into a LC ink using a conventional synthetic method. However, several challenges, such as compatibility with the LC ink, have prevented the achievement of 4D printing via 2PLP. The second approach is based on post-modifying printed LC structures and successfully fabricated microactuators with five different photoresponsive features by individually incorporating each light-absorbing molecule. Furthermore, LC microactuators that exhibit distinct actuation patterns under different colors of light were fabricated by simultaneously implementing orthogonal photoresponsive molecules. The second project presented in this thesis focuses on developing a new strategy to induce alignment domains in a more flexible manner, with the aim of spatially tailoring the LC topology of the 3D printed microstructures. This is achieved by microprinting 3D scaffolds based on polydimethylsiloxane (PDMS) to manipulate the alignment directions of LC molecules. Taking advantage of 2PLP to fabricate arbitrary scaffolds, LC alignments, including planar and radial patterns, could be introduced freely and simultaneously in three-dimensional space with varying degrees of complexity. The applicability of this alignment approach was demonstrated by fabricating responsive LC microstructures within different PDMS environments, and distinct actuation patterns were observed. Overall, these two breakthroughs have unveiled a wide array of new potentials for the utilization of responsive LC microsystems with tunable functionalities and customizable actuation responses, that can be applied across various domains and applications

    Control techniques for mechatronic assisted surgery

    Get PDF
    The treatment response for traumatic head injured patients can be improved by using an autonomous robotic system to perform basic, time-critical emergency neurosurgery, reducing costs and saving lives. In this thesis, a concept for a neurosurgical robotic system is proposed to perform three specific emergency neurosurgical procedures; they are the placement of an intracranial pressure monitor, external ventricular drainage, and the evacuation of chronic subdural haematoma. The control methods for this system are investigated following a curiosity led approach. Individual problems are interpreted in the widest sense and solutions posed that are general in nature. Three main contributions result from this approach: 1) a clinical evidence based review of surgical robotics and a methodology to assist in their evaluation, 2) a new controller for soft-grasping of objects, and 3) new propositions and theorems for chatter suppression sliding mode controllers. These contributions directly assist in the design of the control system of the neurosurgical robot and, more broadly, impact other areas outside the narrow con nes of the target application. A methodology for applied research in surgical robotics is proposed. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers. However, the lack of conformity to the criteria in the top tier, combined with the inability to conclusively prove increased clinical benefit, particularly symptomatic benefit, is shown to be hampering the potential of surgical robotics in gaining wide establishment. A control scheme for soft-grasping objects is presented. Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used to regulate the contact force and prevent slip. Moreover, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. A fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays). This reduced the controller performance. The problem of chattering and potential solutions are explored. Real systems using sliding mode controllers, such as the control scheme for soft-grasping, have a tendency to chatter at high frequencies. This is caused by the sliding mode controller interacting with un-modelled parasitic dynamics at the actuator-input and sensor-output of the plant. As a result, new chatter-suppression sliding mode controllers have been developed, which introduce new parameters into the system. However, the effect any particular choice of parameters has on system performance is unclear, and this can make tuning the parameters to meet a set of performance criteria di cult. In this thesis, common chatter-suppression sliding mode control strategies are surveyed and simple design and estimation methods are proposed. The estimation methods predict convergence, chattering amplitude, settling time, and maximum output bounds (overshoot) using harmonic linearizations and invariant ellipsoid sets
    corecore