224 research outputs found

    Versatility Of Low-Power Wide-Area Network Applications

    Get PDF
    Low-Power Wide-Area Network (LPWAN) is regarded as the leading communication technology for wide-area Internet-of-Things (IoT) applications. It offers low-power, long-range, and low-cost communication. With different communication requirements for varying IoT applications, many competing LPWAN technologies operating in both licensed (e.g., NB-IoT, LTE-M, and 5G) and unlicensed (e.g., LoRa and SigFox) bands have emerged. LPWANs are designed to support applications with low-power and low data rate operations. They are not well-designed to host applications that involve high mobility, high traffic, or real-time communication (e.g., volcano monitoring and control applications).With the increasing number of mobile devices in many IoT domains (e.g., agricultural IoT and smart city), mobility support is not well-addressed in LPWAN. Cellular-based/licensed LPWAN relies on the wired infrastructure to enable mobility. On the other hand, most unlicensed LPWANs operate on the crowded ISM band or are required to duty cycle, making handling mobility a challenge. In this dissertation, we first identify the key opportunities of LPWAN, highlight the challenges, and show potential directions for future research. We then enable the versatility of LPWAN applications first by enabling applications involving mobility over LPWAN. Specifically, we propose to handle mobility in LPWAN over white space considering Sensor Network Over White Space (SNOW). SNOW is a highly scalable and energy-efficient LPWAN operating over the TV white spaces. TV white spaces are the allocated but locally unused available TV channels (54 - 698 MHz in the US). We proposed a dynamic Carrier Frequency Offset (CFO) estimation and compensation technique that considers the impact of the Doppler shift due to mobility. Also, we design energy-efficient and fast BS discovery and association approaches. Finally, we demonstrate the feasibility of our approach through experiments in different deployments. Finally, we present a collision detection and recovery technique called RnR (Reverse & Replace Decoding) that applies to LPWANs. Additionally, we discuss future work to enable handling burst transmission over LPWAN and localization in mobile LPWAN

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    Reducing Operation Cost of LPWAN Roadside Sensors Using Cross Technology Communication

    Full text link
    Low-Power Wide-Area Network (LPWAN) is an emerging communication standard for Internet of Things (IoT) that has strong potential to support connectivity of a large number of roadside sensors with an extremely long communication range. However, the high operation cost to manage such a large-scale roadside sensor network remains as a significant challenge. In this paper, we propose LOC-LPWAN, a novel optimization framework that is designed to reduce the operation cost using the cross technology communication (CTC). LOC-LPWAN allows roadside sensors to offload sensor data to passing vehicles that in turn forward the data to a LPWAN server using CTC aiming to reduce the data subscription cost. LOC-LPWAN finds the optimal communication schedule between sensors and vehicles to maximize the throughput given an available budget of the user. Furthermore, LOC-LPWAN optimizes the fairness among sensors by allowing sensors to transmit similar amounts of data and preventing certain sensors from dominating the opportunity for data transmissions. LOC-LPWAN also provides an option that allows all sensor to transmit data within a specific delay bound. Extensive numerical analysis performed with real-world taxi data consisting of 40 vehicles with 24-hour trajectories demonstrate that LOC-LPWAN improves the throughput by 72.6%, enhances the fairness by 65.7%, and reduces the delay by 28.8% compared with a greedy algorithm given the same budget

    Systematic literature survey: applications of LoRa communication

    Get PDF
    LoRa is a communication scheme that is part of the low power wide are network (LPWAN) technology using ISM bands. It has seen extensive documentation and use in research and industry due to its long coverage ranges of up-to 20Km or more with less than 14dB transmit power. Moreover, some applications report theoretical battery lives of upto 10years for field deployed modules utilising the scheme in WSN applications. Additionally, the scheme is very resilient to losses from noise, as well bursts of interference through its FEC. Our objective is to systematically review the empirical evidence of the use-cases of LoRa in rural landscapes, metrics and the relevant validation schemes. In addition the research is evaluated based on (i) mathematical function of the scheme (bandwidth use, spreading factor, symbol rate, chip rate and nominal bit rate) (ii) use-cases (iii) test-beds, metrics of evaluation and (iv) validation methods. A systematic literature review of published, refereed primary studies on LoRa applications was conducted. Using articles from 2010-2019. We identified 21 relevant primary studies. These reported a range of different assessments of LoRa. 10 out of 21 reported on novel use cases. As an actionable conclusion, the authors conclude that more work is needed in terms of field testing, as no articles could be found on performance/deployment in Botswana or South Africa despite the existence of LoRa networks in both countries. Thus researchers in the region can research propagation models performance, energy efficiency of the scheme and MAC layer as well as the channel access challenges for the region

    A Viable LoRa Framework for Smart Cities

    Get PDF
    This research is intended to provide practical insights to empower designers, developers and management to develop smart cities underpinned by Long Range (LoRa) technology. LoRa, one of most prevalent long-range wireless communication technologies, can be used to underpin the development of smart cities. This study draws upon relevant research to gain an understanding of underlying principles and issues involved in the design and management of long-range and low-power networks such as LoRa. This research uses empirical evidence that has been gathered through experiments with a LoRa network to analyse network design and identify challenges and then proposes cost-effective and timely solutions. Particularly, practical measurements of LoRa network dependencies and performance metrics are used to support our proposals. This research identifies a number of network performance metrics that need to be considered and controlled when designing and managing LoRa- specific networks from the perspectives of hardware, software, networking and security
    • …
    corecore