12,523 research outputs found

    Discourse network analysis: policy debates as dynamic networks

    Get PDF
    Political discourse is the verbal interaction between political actors. Political actors make normative claims about policies conditional on each other. This renders discourse a dynamic network phenomenon. Accordingly, the structure and dynamics of policy debates can be analyzed with a combination of content analysis and dynamic network analysis. After annotating statements of actors in text sources, networks can be created from these structured data, such as congruence or conflict networks at the actor or concept level, affiliation networks of actors and concept stances, and longitudinal versions of these networks. The resulting network data reveal important properties of a debate, such as the structure of advocacy coalitions or discourse coalitions, polarization and consensus formation, and underlying endogenous processes like popularity, reciprocity, or social balance. The added value of discourse network analysis over survey-based policy network research is that policy processes can be analyzed from a longitudinal perspective. Inferential techniques for understanding the micro-level processes governing political discourse are being developed

    Ontologies on the semantic web

    Get PDF
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The “Semantic Web” was touted by its developers as equally revolutionary but has not yet achieved anything like the Web’s exponential uptake. This 17 000 word survey article explores why this might be so, from a perspective that bridges both philosophy and IT

    Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd

    Get PDF
    Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described

    Anticipation as prediction in the predication of data types

    Get PDF
    Every object in existence has its type. Every subject in language has its predicate. Every intension in logic has its extension. Each therefore has two levels but with the fundamental problem of the relationship between the two. The formalism of set theory cannot guarantee the two are co-extensive. That has to be imposed by the axiom of extensibility, which is inadequate for types as shown by Bertrand Russell's rami ed type theory, for language as by Henri Poincar e's impredication and for intension unless satisfying Port Royal's de nitive concept. An anticipatory system is usually de ned to contain its own future state. What is its type? What is its predicate? What is its extension? Set theory can well represent formally the weak anticipatory system, that is in a model of itself. However we have previously shown that the metaphysics of process category theory is needed to represent strong anticipation. Time belongs to extension not intension. The apparent prediction of strong anticipation is really in the structure of its predication. The typing of anticipation arises from a combination of and | respectively (co) multiplication of the (co)monad induced by adjointness of the system's own process. As a property of cartesian closed categories this predication has signi cance for all typing in general systems theory including even in the de nition of time itself

    COOPERATIVE QUERY ANSWERING FOR APPROXIMATE ANSWERS WITH NEARNESS MEASURE IN HIERARCHICAL STRUCTURE INFORMATION SYSTEMS

    Get PDF
    Cooperative query answering for approximate answers has been utilized in various problem domains. Many challenges in manufacturing information retrieval, such as: classifying parts into families in group technology implementation, choosing the closest alternatives or substitutions for an out-of-stock part, or finding similar existing parts for rapid prototyping, could be alleviated using the concept of cooperative query answering. Most cooperative query answering techniques proposed by researchers so far concentrate on simple queries or single table information retrieval. Query relaxations in searching for approximate answers are mostly limited to attribute value substitutions. Many hierarchical structure information systems, such as manufacturing information systems, store their data in multiple tables that are connected to each other using hierarchical relationships - "aggregation", "generalization/specialization", "classification", and "category". Due to the nature of hierarchical structure information systems, information retrieval in such domains usually involves nested or jointed queries. In addition, searching for approximate answers in hierarchical structure databases not only considers attribute value substitutions, but also must take into account attribute or relation substitutions (i.e., WIDTH to DIAMETER, HOLE to GROOVE). For example, shape transformations of parts or features are possible and commonly practiced. A bar could be transformed to a rod. Such characteristics of hierarchical information systems, simple query or single-relation query relaxation techniques used in most cooperative query answering systems are not adequate. In this research, we proposed techniques for neighbor knowledge constructions, and complex query relaxations. We enhanced the original Pattern-based Knowledge Induction (PKI) and Distribution Sensitive Clustering (DISC) so that they can be used in neighbor hierarchy constructions at both tuple and attribute levels. We developed a cooperative query answering model to facilitate the approximate answer searching for complex queries. Our cooperative query answering model is comprised of algorithms for determining the causes of null answer, expanding qualified tuple set, expanding intersected tuple set, and relaxing multiple condition simultaneously. To calculate the semantic nearness between exact-match answers and approximate answers, we also proposed a nearness measuring function, called "Block Nearness", that is appropriate for the query relaxation methods proposed in this research
    corecore