865 research outputs found

    Earth Resources Laboratory research and technology

    Get PDF
    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed

    A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction

    Get PDF
    An early and reliable estimation of crop yield is essential in quantitative and financial evaluation at the field level for determining strategic plans in agricultural commodities for import-export policies and doubling farmer’s incomes. Crop yield predictions are carried out to estimate higher crop yield through the use of machine learning algorithms which are one of the challenging issues in the agricultural sector. Due to this developing significance of crop yield prediction, this article provides an exhaustive review on the use of machine learning algorithms to predict crop yield with special emphasis on palm oil yield prediction. Initially, the current status of palm oil yield around the world is presented, along with a brief discussion on the overview of widely used features and prediction algorithms. Then, the critical evaluation of the state-of-the-art machine learning-based crop yield prediction, machine learning application in the palm oil industry and comparative analysis of related studies are presented. Consequently, a detailed study of the advantages and difficulties related to machine learning-based crop yield prediction and proper identification of current and future challenges to the agricultural industry is presented. The potential solutions are additionally prescribed in order to alleviate existing problems in crop yield prediction. Since one of the major objectives of this study is to explore the future perspectives of machine learning-based palm oil yield prediction, the areas including application of remote sensing, plant’s growth and disease recognition, mapping and tree counting, optimum features and algorithms have been broadly discussed. Finally, a prospective architecture of machine learning-based palm oil yield prediction has been proposed based on the critical evaluation of existing related studies. This technology will fulfill its promise by performing new research challenges in the analysis of crop yield prediction and the development

    Benchmarking environmental machine-learning models: methodological progress and an application to forest health

    Get PDF
    Geospatial machine learning is a versatile approach to analyze environmental data and can help to better understand the interactions and current state of our environment. Due to the artificial intelligence of these algorithms, complex relationships can possibly be discovered which might be missed by other analysis methods. Modeling the interaction of creatures with their environment is referred to as ecological modeling, which is a subcategory of environmental modeling. A subfield of ecological modeling is SDM, which aims to understand the relation between the presence or absence of certain species in their environments. SDM is different from classical mapping/detection analysis. While the latter primarily aim for a visual representation of a species spatial distribution, the former focuses on using the available data to build models and interpreting these. Because no single best option exists to build such models, different settings need to be evaluated and compared against each other. When conducting such modeling comparisons, which are commonly referred to as benchmarking, care needs to be taken throughout the analysis steps to achieve meaningful and unbiased results. These steps are composed out of data preprocessing, model optimization and performance assessment. While these general principles apply to any modeling analysis, their application in an environmental context often requires additional care with respect to data handling, possibly hidden underlying data effects and model selection. To conduct all in a programmatic (and efficient) way, toolboxes in the form of programming modules or packages are needed. This work makes methodological contributions which focus on efficient, machine-learning based analysis of environmental data. In addition, research software to generalize and simplify the described process has been created throughout this work
    • …
    corecore